跳到内容

dstack

vLLM_plus_dstack

您可以在基于云的GPU机器上运行vLLM,使用dstack。dstack是一个开源框架,可以在任何云上运行LLM。本教程假设您已经在云环境中配置了凭据、网关和GPU配额。

要安装dstack客户端,请运行

pip install dstack[all]
dstack server

接下来,要配置您的dstack项目,请运行

mkdir -p vllm-dstack
cd vllm-dstack
dstack init

接下来,要为LLM(本例中为NousResearch/Llama-2-7b-chat-hf)配置VM实例,请为dstack Service创建以下serve.dstack.yml文件:

配置
type: service

python: "3.11"
env:
    - MODEL=NousResearch/Llama-2-7b-chat-hf
port: 8000
resources:
    gpu: 24GB
commands:
    - pip install vllm
    - vllm serve $MODEL --port 8000
model:
    format: openai
    type: chat
    name: NousResearch/Llama-2-7b-chat-hf

然后,运行以下CLI进行配置:

命令
$ dstack run . -f serve.dstack.yml

⠸ Getting run plan...
Configuration  serve.dstack.yml
Project        deep-diver-main
User           deep-diver
Min resources  2..xCPU, 8GB.., 1xGPU (24GB)
Max price      -
Max duration   -
Spot policy    auto
Retry policy   no

#  BACKEND  REGION       INSTANCE       RESOURCES                               SPOT  PRICE
1  gcp   us-central1  g2-standard-4  4xCPU, 16GB, 1xL4 (24GB), 100GB (disk)  yes   $0.223804
2  gcp   us-east1     g2-standard-4  4xCPU, 16GB, 1xL4 (24GB), 100GB (disk)  yes   $0.223804
3  gcp   us-west1     g2-standard-4  4xCPU, 16GB, 1xL4 (24GB), 100GB (disk)  yes   $0.223804
    ...
Shown 3 of 193 offers, $5.876 max

Continue? [y/n]: y
⠙ Submitting run...
⠏ Launching spicy-treefrog-1 (pulling)
spicy-treefrog-1 provisioning completed (running)
Service is published at ...

配置完成后,您可以使用OpenAI SDK与模型进行交互:

代码
from openai import OpenAI

client = OpenAI(
    base_url="https://gateway.<gateway domain>",
    api_key="<YOUR-DSTACK-SERVER-ACCESS-TOKEN>",
)

completion = client.chat.completions.create(
    model="NousResearch/Llama-2-7b-chat-hf",
    messages=[
        {
            "role": "user",
            "content": "Compose a poem that explains the concept of recursion in programming.",
        }
    ],
)

print(completion.choices[0].message.content)

注意

dstack会自动使用dstack的令牌在网关上处理身份验证。同时,如果您不想配置网关,可以配置dstack Task而不是ServiceTask仅用于开发目的。如果您想了解更多关于如何使用dstack服务vLLM的实践材料,请查看此存储库