使用 Kubernetes¶
在 Kubernetes 上部署 vLLM 是服务机器学习模型的一种可扩展且高效的方式。本指南将引导您完成使用原生 Kubernetes 部署 vLLM 的过程。
或者,您也可以使用以下任何一种方式将 vLLM 部署到 Kubernetes:
- Helm
- InftyAI/llmaz
- KAITO
- KServe
- Kthena
- KubeRay
- kubernetes-sigs/lws
- meta-llama/llama-stack
- substratusai/kubeai
- vllm-project/aibrix
- vllm-project/production-stack
使用 CPU 部署¶
注意
此处使用 CPU 仅用于演示和测试目的,其性能无法与 GPU 相提并论。
首先,创建一个 Kubernetes PVC 和 Secret,用于下载和存储 Hugging Face 模型。
配置
cat <<EOF |kubectl apply -f -
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: vllm-models
spec:
accessModes:
- ReadWriteOnce
volumeMode: Filesystem
resources:
requests:
storage: 50Gi
---
apiVersion: v1
kind: Secret
metadata:
name: hf-token-secret
type: Opaque
stringData:
token: "REPLACE_WITH_TOKEN"
EOF
在此,token 字段存储您的 **Hugging Face 访问令牌**。有关如何生成令牌的详细信息,请参阅 Hugging Face 文档。
接下来,将 vLLM 服务器作为 Kubernetes Deployment 和 Service 启动。
配置
cat <<EOF |kubectl apply -f -
apiVersion: apps/v1
kind: Deployment
metadata:
name: vllm-server
spec:
replicas: 1
selector:
matchLabels:
app.kubernetes.io/name: vllm
template:
metadata:
labels:
app.kubernetes.io/name: vllm
spec:
containers:
- name: vllm
image: vllm/vllm-openai:latest
command: ["/bin/sh", "-c"]
args: [
"vllm serve meta-llama/Llama-3.2-1B-Instruct"
]
env:
- name: HF_TOKEN
valueFrom:
secretKeyRef:
name: hf-token-secret
key: token
ports:
- containerPort: 8000
volumeMounts:
- name: llama-storage
mountPath: /root/.cache/huggingface
volumes:
- name: llama-storage
persistentVolumeClaim:
claimName: vllm-models
---
apiVersion: v1
kind: Service
metadata:
name: vllm-server
spec:
selector:
app.kubernetes.io/name: vllm
ports:
- protocol: TCP
port: 8000
targetPort: 8000
type: ClusterIP
EOF
我们可以通过日志验证 vLLM 服务器是否已成功启动(这可能需要几分钟时间来下载模型)。
kubectl logs -l app.kubernetes.io/name=vllm
...
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8000 (Press CTRL+C to quit)
使用 GPU 部署¶
先决条件:确保您有一个正在运行的 带有 GPU 的 Kubernetes 集群。
-
为 vLLM 创建 PVC、Secret 和 Deployment。
PVC 用于存储模型缓存,它是可选的;您可以使用 hostPath 或其他存储选项。
Yaml
Secret 是可选的,仅在访问受限模型时需要。如果您不使用受限模型,可以跳过此步骤。
apiVersion: v1 kind: Secret metadata: name: hf-token-secret namespace: default type: Opaque stringData: token: "REPLACE_WITH_TOKEN"接下来,为 vLLM 创建 Deployment 文件来运行模型服务器。以下示例部署了
Mistral-7B-Instruct-v0.3模型。以下是使用 NVIDIA GPU 和 AMD GPU 的两个示例。
NVIDIA GPU
Yaml
apiVersion: apps/v1 kind: Deployment metadata: name: mistral-7b namespace: default labels: app: mistral-7b spec: replicas: 1 selector: matchLabels: app: mistral-7b template: metadata: labels: app: mistral-7b spec: volumes: - name: cache-volume persistentVolumeClaim: claimName: mistral-7b # vLLM needs to access the host's shared memory for tensor parallel inference. - name: shm emptyDir: medium: Memory sizeLimit: "2Gi" containers: - name: mistral-7b image: vllm/vllm-openai:latest command: ["/bin/sh", "-c"] args: [ "vllm serve mistralai/Mistral-7B-Instruct-v0.3 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" ] env: - name: HF_TOKEN valueFrom: secretKeyRef: name: hf-token-secret key: token ports: - containerPort: 8000 resources: limits: cpu: "10" memory: 20G nvidia.com/gpu: "1" requests: cpu: "2" memory: 6G nvidia.com/gpu: "1" volumeMounts: - mountPath: /root/.cache/huggingface name: cache-volume - name: shm mountPath: /dev/shm livenessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 60 periodSeconds: 10 readinessProbe: httpGet: path: /health port: 8000 initialDelaySeconds: 60 periodSeconds: 5AMD GPU
如果您使用的是 AMD ROCm GPU(如 MI300X),可以参考下面的
deployment.yaml。Yaml
apiVersion: apps/v1 kind: Deployment metadata: name: mistral-7b namespace: default labels: app: mistral-7b spec: replicas: 1 selector: matchLabels: app: mistral-7b template: metadata: labels: app: mistral-7b spec: volumes: # PVC - name: cache-volume persistentVolumeClaim: claimName: mistral-7b # vLLM needs to access the host's shared memory for tensor parallel inference. - name: shm emptyDir: medium: Memory sizeLimit: "8Gi" hostNetwork: true hostIPC: true containers: - name: mistral-7b image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4 securityContext: seccompProfile: type: Unconfined runAsGroup: 44 capabilities: add: - SYS_PTRACE command: ["/bin/sh", "-c"] args: [ "vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024" ] env: - name: HF_TOKEN valueFrom: secretKeyRef: name: hf-token-secret key: token ports: - containerPort: 8000 resources: limits: cpu: "10" memory: 20G amd.com/gpu: "1" requests: cpu: "6" memory: 6G amd.com/gpu: "1" volumeMounts: - name: cache-volume mountPath: /root/.cache/huggingface - name: shm mountPath: /dev/shm您可以从 https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve 获取包含步骤和示例 YAML 文件的完整示例。
-
为 vLLM 创建 Kubernetes Service。
接下来,创建一个 Kubernetes Service 文件来公开
mistral-7bDeployment。Yaml
apiVersion: v1 kind: Service metadata: name: mistral-7b namespace: default spec: ports: - name: http-mistral-7b port: 80 protocol: TCP targetPort: 8000 # The label selector should match the deployment labels & it is useful for prefix caching feature selector: app: mistral-7b sessionAffinity: None type: ClusterIP -
部署和测试
使用
kubectl apply -f <filename>应用 Deployment 和 Service 配置。要测试 Deployment,请运行以下
curl命令:curl http://mistral-7b.default.svc.cluster.local/v1/completions \ -H "Content-Type: application/json" \ -d '{ "model": "mistralai/Mistral-7B-Instruct-v0.3", "prompt": "San Francisco is a", "max_tokens": 7, "temperature": 0 }'如果 Service 部署正确,您应该会收到来自 vLLM 模型的响应。
故障排除¶
启动探针或就绪探针失败,容器日志包含“KeyboardInterrupt: terminated”¶
如果启动或就绪探针的 failureThreshold 设置得太低,无法在服务器启动所需的时间内完成,Kubernetes 调度器将终止该容器。以下是发生这种情况的几个迹象:
- 容器日志包含“KeyboardInterrupt: terminated”
kubectl get events显示消息Container $NAME failed startup probe, will be restarted(容器 $NAME 启动探针失败,将重启)。
为解决此问题,请增加 failureThreshold 以允许模型服务器有更多时间启动并提供服务。您可以移除清单中的探针,然后测量模型服务器准备好提供服务所需的时间,从而确定理想的 failureThreshold。
结论¶
使用 Kubernetes 部署 vLLM 可以实现 ML 模型的高效扩展和管理,并充分利用 GPU 资源。按照上述步骤,您应该能够设置并测试 Kubernetes 集群中的 vLLM Deployment。如果您遇到任何问题或有建议,请随时为文档做出贡献。