基础¶
来源 https://github.com/vllm-project/vllm/tree/main/examples/offline_inference/basic。
LLM 类提供了用于离线推理的主要 Python 接口,即在不使用单独的模型推理服务器的情况下与模型进行交互。
用法¶
此示例中的第一个脚本展示了 vLLM 最基本的使用方法。如果您是 Python 和 vLLM 的新手,您应该从这里开始。
其余脚本包含一个 参数解析器,您可以使用它来传递与 LLM 兼容的任何参数。尝试使用 --help 运行脚本以获取所有可用参数的列表。
chat 和 generate 脚本还接受 采样参数:max_tokens、temperature、top_p 和 top_k。
功能特性¶
在支持传递参数的脚本中,您可以尝试以下功能。
默认生成配置¶
--generation-config 参数指定了在调用 LLM.get_default_sampling_params() 时将从何处加载生成配置。如果设置为“auto”,则生成配置将从模型路径加载。如果设置为文件夹路径,则生成配置将从指定的文件夹路径加载。如果未提供,将使用 vLLM 默认值。
如果在生成配置中指定了 max_new_tokens,那么它将为所有请求设置一个服务器范围内的输出令牌数量限制。
使用以下参数亲身体验一下
量化¶
GGUF¶
vLLM 支持使用 GGUF 量化的模型。
下载一个量化的 GGUF 模型并使用以下参数,亲身体验一下
from huggingface_hub import hf_hub_download
repo_id = "bartowski/Phi-3-medium-4k-instruct-GGUF"
filename = "Phi-3-medium-4k-instruct-IQ2_M.gguf"
print(hf_hub_download(repo_id, filename=filename))
CPU 卸载¶
--cpu-offload-gb 参数可以被看作是增加 GPU 内存大小的一种虚拟方式。例如,如果您有一个 24 GB 的 GPU 并将其设置为 10,那么您可以将其视为一个 34 GB 的 GPU。然后,您可以使用 BF16 权重加载一个 13B 模型,该模型至少需要 26GB 的 GPU 内存。请注意,这需要快速的 CPU-GPU 互连,因为模型的一部分会在每次模型前向传播时即时地从 CPU 内存加载到 GPU 内存。
使用以下参数亲身体验一下
示例材料¶
basic.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(model="facebook/opt-125m")
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()
chat.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def create_parser():
parser = FlexibleArgumentParser()
# Add engine args
EngineArgs.add_cli_args(parser)
parser.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
# Add sampling params
sampling_group = parser.add_argument_group("Sampling parameters")
sampling_group.add_argument("--max-tokens", type=int)
sampling_group.add_argument("--temperature", type=float)
sampling_group.add_argument("--top-p", type=float)
sampling_group.add_argument("--top-k", type=int)
# Add example params
parser.add_argument("--chat-template-path", type=str)
return parser
def main(args: dict):
# Pop arguments not used by LLM
max_tokens = args.pop("max_tokens")
temperature = args.pop("temperature")
top_p = args.pop("top_p")
top_k = args.pop("top_k")
chat_template_path = args.pop("chat_template_path")
# Create an LLM
llm = LLM(**args)
# Create sampling params object
sampling_params = llm.get_default_sampling_params()
if max_tokens is not None:
sampling_params.max_tokens = max_tokens
if temperature is not None:
sampling_params.temperature = temperature
if top_p is not None:
sampling_params.top_p = top_p
if top_k is not None:
sampling_params.top_k = top_k
def print_outputs(outputs):
print("\nGenerated Outputs:\n" + "-" * 80)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\n")
print(f"Generated text: {generated_text!r}")
print("-" * 80)
print("=" * 80)
# In this script, we demonstrate how to pass input to the chat method:
conversation = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hello! How can I assist you today?"},
{
"role": "user",
"content": "Write an essay about the importance of higher education.",
},
]
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
print_outputs(outputs)
# You can run batch inference with llm.chat API
conversations = [conversation for _ in range(10)]
# We turn on tqdm progress bar to verify it's indeed running batch inference
outputs = llm.chat(conversations, sampling_params, use_tqdm=True)
print_outputs(outputs)
# A chat template can be optionally supplied.
# If not, the model will use its default chat template.
if chat_template_path is not None:
with open(chat_template_path) as f:
chat_template = f.read()
outputs = llm.chat(
conversations,
sampling_params,
use_tqdm=False,
chat_template=chat_template,
)
print_outputs(outputs)
if __name__ == "__main__":
parser = create_parser()
args: dict = vars(parser.parse_args())
main(args)
classify.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="jason9693/Qwen2.5-1.5B-apeach",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass runner="pooling" for classification models
llm = LLM(**vars(args))
# Generate logits. The output is a list of ClassificationRequestOutputs.
outputs = llm.classify(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
probs = output.outputs.probs
probs_trimmed = (str(probs[:16])[:-1] + ", ...]") if len(probs) > 16 else probs
print(
f"Prompt: {prompt!r} \n"
f"Class Probabilities: {probs_trimmed} (size={len(probs)})"
)
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)
embed.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.attention.backends.registry import AttentionBackendEnum
from vllm.config import AttentionConfig
from vllm.platforms import current_platform
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="intfloat/e5-small",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
if current_platform.is_rocm():
args.attention_config = AttentionConfig(
backend=AttentionBackendEnum.FLEX_ATTENTION
)
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass runner="pooling" for embedding models
llm = LLM(**vars(args))
# Generate embedding. The output is a list of EmbeddingRequestOutputs.
outputs = llm.embed(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
embeds = output.outputs.embedding
embeds_trimmed = (
(str(embeds[:16])[:-1] + ", ...]") if len(embeds) > 16 else embeds
)
print(f"Prompt: {prompt!r} \nEmbeddings: {embeds_trimmed} (size={len(embeds)})")
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)
generate.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def create_parser():
parser = FlexibleArgumentParser()
# Add engine args
EngineArgs.add_cli_args(parser)
parser.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
# Add sampling params
sampling_group = parser.add_argument_group("Sampling parameters")
sampling_group.add_argument("--max-tokens", type=int)
sampling_group.add_argument("--temperature", type=float)
sampling_group.add_argument("--top-p", type=float)
sampling_group.add_argument("--top-k", type=int)
return parser
def main(args: dict):
# Pop arguments not used by LLM
max_tokens = args.pop("max_tokens")
temperature = args.pop("temperature")
top_p = args.pop("top_p")
top_k = args.pop("top_k")
# Create an LLM
llm = LLM(**args)
# Create a sampling params object
sampling_params = llm.get_default_sampling_params()
if max_tokens is not None:
sampling_params.max_tokens = max_tokens
if temperature is not None:
sampling_params.temperature = temperature
if top_p is not None:
sampling_params.top_p = top_p
if top_k is not None:
sampling_params.top_k = top_k
# Generate texts from the prompts. The output is a list of RequestOutput
# objects that contain the prompt, generated text, and other information.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
if __name__ == "__main__":
parser = create_parser()
args: dict = vars(parser.parse_args())
main(args)
reward.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="internlm/internlm2-1_8b-reward",
runner="pooling",
enforce_eager=True,
max_model_len=1024,
trust_remote_code=True,
)
return parser.parse_args()
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass runner="pooling" for reward models
llm = LLM(**vars(args))
# Generate rewards. The output is a list of PoolingRequestOutput.
outputs = llm.reward(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for prompt, output in zip(prompts, outputs):
rewards = output.outputs.data
rewards_trimmed = (
(str(rewards[:16])[:-1] + ", ...]") if len(rewards) > 16 else rewards
)
print(f"Prompt: {prompt!r} \nReward: {rewards_trimmed} (size={len(rewards)})")
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)
score.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.attention.backends.registry import AttentionBackendEnum
from vllm.config import AttentionConfig
from vllm.platforms import current_platform
from vllm.utils.argparse_utils import FlexibleArgumentParser
def parse_args():
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(
model="BAAI/bge-reranker-v2-m3",
runner="pooling",
enforce_eager=True,
)
return parser.parse_args()
def main(args: Namespace):
if current_platform.is_rocm():
args.attention_config = AttentionConfig(
backend=AttentionBackendEnum.FLEX_ATTENTION
)
# Sample prompts.
text_1 = "What is the capital of France?"
texts_2 = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
]
# Create an LLM.
# You should pass runner="pooling" for cross-encoder models
llm = LLM(**vars(args))
# Generate scores. The output is a list of ScoringRequestOutputs.
outputs = llm.score(text_1, texts_2)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for text_2, output in zip(texts_2, outputs):
score = output.outputs.score
print(f"Pair: {[text_1, text_2]!r} \nScore: {score}")
print("-" * 60)
if __name__ == "__main__":
args = parse_args()
main(args)