MultiLoRA 推理
源文件 examples/offline_inference/multilora_inference.py。
# SPDX-License-Identifier: Apache-2.0
"""
This example shows how to use the multi-LoRA functionality
for offline inference.
Requires HuggingFace credentials for access to Llama2.
"""
from typing import Optional
from huggingface_hub import snapshot_download
from vllm import EngineArgs, LLMEngine, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest
def create_test_prompts(
lora_path: str,
) -> list[tuple[str, SamplingParams, Optional[LoRARequest]]]:
"""Create a list of test prompts with their sampling parameters.
2 requests for base model, 4 requests for the LoRA. We define 2
different LoRA adapters (using the same model for demo purposes).
Since we also set `max_loras=1`, the expectation is that the requests
with the second LoRA adapter will be ran after all requests with the
first adapter have finished.
"""
return [
(
"A robot may not injure a human being",
SamplingParams(
temperature=0.0, logprobs=1, prompt_logprobs=1, max_tokens=128
),
None,
),
(
"To be or not to be,",
SamplingParams(
temperature=0.8, top_k=5, presence_penalty=0.2, max_tokens=128
),
None,
),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
SamplingParams(
temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=128,
stop_token_ids=[32003],
),
LoRARequest("sql-lora", 1, lora_path),
),
(
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_name_74 (icao VARCHAR, airport VARCHAR)\n\n question: Name the ICAO for lilongwe international airport [/user] [assistant]", # noqa: E501
SamplingParams(
temperature=0.0,
logprobs=1,
prompt_logprobs=1,
max_tokens=128,
stop_token_ids=[32003],
),
LoRARequest("sql-lora2", 2, lora_path),
),
]
def process_requests(
engine: LLMEngine,
test_prompts: list[tuple[str, SamplingParams, Optional[LoRARequest]]],
):
"""Continuously process a list of prompts and handle the outputs."""
request_id = 0
print("-" * 50)
while test_prompts or engine.has_unfinished_requests():
if test_prompts:
prompt, sampling_params, lora_request = test_prompts.pop(0)
engine.add_request(
str(request_id), prompt, sampling_params, lora_request=lora_request
)
request_id += 1
request_outputs: list[RequestOutput] = engine.step()
for request_output in request_outputs:
if request_output.finished:
print(request_output)
print("-" * 50)
def initialize_engine() -> LLMEngine:
"""Initialize the LLMEngine."""
# max_loras: controls the number of LoRAs that can be used in the same
# batch. Larger numbers will cause higher memory usage, as each LoRA
# slot requires its own preallocated tensor.
# max_lora_rank: controls the maximum supported rank of all LoRAs. Larger
# numbers will cause higher memory usage. If you know that all LoRAs will
# use the same rank, it is recommended to set this as low as possible.
# max_cpu_loras: controls the size of the CPU LoRA cache.
engine_args = EngineArgs(
model="meta-llama/Llama-2-7b-hf",
enable_lora=True,
max_loras=1,
max_lora_rank=8,
max_cpu_loras=2,
max_num_seqs=256,
)
return LLMEngine.from_engine_args(engine_args)
def main():
"""Main function that sets up and runs the prompt processing."""
engine = initialize_engine()
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
test_prompts = create_test_prompts(lora_path)
process_requests(engine, test_prompts)
if __name__ == "__main__":
main()