使用 OpenAI Batch 文件格式进行离线推理¶
来源 https://github.com/vllm-project/vllm/tree/main/examples/offline_inference/openai_batch。
This is a guide to performing batch inference using the OpenAI batch file format, **not** the complete Batch (REST) API.
文件格式¶
OpenAI Batch 文件格式由一系列在新行上的 JSON 对象组成。
每一行代表一个单独的请求。有关更多详细信息,请参阅 OpenAI 包参考。
We currently support `/v1/chat/completions`, `/v1/embeddings`, and `/v1/score` endpoints (completions coming soon).
先决条件¶
- 本文档中的示例使用
meta-llama/Meta-Llama-3-8B-Instruct。
示例 1:使用本地文件运行¶
步骤 1:创建您的 Batch 文件¶
要跟随此示例,您可以下载示例 Batch,或者在您的工作目录中创建自己的 Batch 文件。
wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl
创建 Batch 文件后,它应该看起来像这样
cat offline_inference/openai_batch/openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}
步骤 2:运行 Batch¶
Batch 运行工具设计用于从命令行使用。
您可以使用以下命令运行 Batch,它会将结果写入名为 results.jsonl 的文件
python -m vllm.entrypoints.openai.run_batch \
-i offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
或使用命令行
vllm run-batch \
-i offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
步骤 3:检查您的结果¶
您现在应该在 results.jsonl 中找到您的结果。您可以通过运行 cat results.jsonl 来检查您的结果
cat results.jsonl
{"id":"vllm-383d1c59835645aeb2e07d004d62a826","custom_id":"request-1","response":{"id":"cmpl-61c020e54b964d5a98fa7527bfcdd378","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"Hello! It's great to meet you! I'm here to help with any questions or tasks you may have. What's on your mind today?"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":25,"total_tokens":56,"completion_tokens":31}},"error":null}
{"id":"vllm-42e3d09b14b04568afa3f1797751a267","custom_id":"request-2","response":{"id":"cmpl-f44d049f6b3a42d4b2d7850bb1e31bcc","object":"chat.completion","created":1715633336,"model":"meta-llama/Meta-Llama-3-8B-Instruct","choices":[{"index":0,"message":{"role":"assistant","content":"*silence*"},"logprobs":null,"finish_reason":"stop","stop_reason":null}],"usage":{"prompt_tokens":27,"total_tokens":32,"completion_tokens":5}},"error":null}
示例 2:使用远程文件¶
Batch Runner 支持可通过 http/https 访问的远程输入和输出 URL。
例如,要运行我们的位于 https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl 的示例输入文件,您可以运行
python -m vllm.entrypoints.openai.run_batch \
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
或使用命令行
vllm run-batch \
-i https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl \
-o results.jsonl \
--model meta-llama/Meta-Llama-3-8B-Instruct
示例 3:与 AWS S3 集成¶
为了与云对象存储集成,我们建议使用预签名 URL。
[在此处了解有关 S3 预签名 URL 的更多信息]
附加先决条件¶
- 创建一个 S3 存储桶.
awscli包(运行pip install awscli)用于配置您的凭据并交互式使用 s3。boto3Python 包(运行pip install boto3)用于生成预签名 URL。
步骤 1:上传您的输入脚本¶
要跟随此示例,您可以下载示例 Batch,或者在您的工作目录中创建自己的 Batch 文件。
wget https://raw.githubusercontent.com/vllm-project/vllm/main/examples/offline_inference/openai_batch/openai_example_batch.jsonl
创建 Batch 文件后,它应该看起来像这样
cat offline_inference/openai_batch/openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}
现在将您的 Batch 文件上传到您的 S3 存储桶。
aws s3 cp offline_inference/openai_batch/openai_example_batch.jsonl s3://MY_BUCKET/MY_INPUT_FILE.jsonl
步骤 2:生成您的预签名 URL¶
预签名 URL 只能通过 SDK 生成。您可以运行以下 Python 脚本来生成您的预签名 URL。请务必用您的存储桶和文件名替换 MY_BUCKET、MY_INPUT_FILE.jsonl 和 MY_OUTPUT_FILE.jsonl 占位符。
import boto3
from botocore.exceptions import ClientError
def generate_presigned_url(s3_client, client_method, method_parameters, expires_in):
"""
Generate a presigned Amazon S3 URL that can be used to perform an action.
:param s3_client: A Boto3 Amazon S3 client.
:param client_method: The name of the client method that the URL performs.
:param method_parameters: The parameters of the specified client method.
:param expires_in: The number of seconds the presigned URL is valid for.
:return: The presigned URL.
"""
try:
url = s3_client.generate_presigned_url(
ClientMethod=client_method,
Params=method_parameters,
ExpiresIn=expires_in,
)
except ClientError:
raise
return url
s3_client = boto3.client("s3")
input_url = generate_presigned_url(
s3_client,
"get_object",
{"Bucket": "MY_BUCKET", "Key": "MY_INPUT_FILE.jsonl"},
expires_in=3600,
)
output_url = generate_presigned_url(
s3_client,
"put_object",
{"Bucket": "MY_BUCKET", "Key": "MY_OUTPUT_FILE.jsonl"},
expires_in=3600,
)
print(f"{input_url=}")
print(f"{output_url=}")
该脚本应输出
input_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
output_url='https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091'
步骤 3:使用您的预签名 URL 运行 Batch Runner¶
您现在可以使用上一节生成的 URL 来运行 Batch Runner。
python -m vllm.entrypoints.openai.run_batch \
-i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
-o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
--model --model meta-llama/Meta-Llama-3-8B-Instruct
或使用命令行
vllm run-batch \
-i "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_INPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
-o "https://s3.us-west-2.amazonaws.com/MY_BUCKET/MY_OUTPUT_FILE.jsonl?AWSAccessKeyId=ABCDEFGHIJKLMNOPQRST&Signature=abcdefghijklmnopqrstuvwxyz12345&Expires=1715800091" \
--model --model meta-llama/Meta-Llama-3-8B-Instruct
步骤 4:查看您的结果¶
您的结果现在已在 S3 上。您可以通过运行 cat results.jsonl 在终端中查看它们
示例 4:使用 Embeddings 端点¶
附加先决条件¶
- 确保您使用的是
vllm >= 0.5.5。
步骤 1:创建您的 Batch 文件¶
将 Embeddings 请求添加到您的 Batch 文件。以下是一个示例
{"custom_id": "request-1", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/e5-mistral-7b-instruct", "input": "You are a helpful assistant."}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/embeddings", "body": {"model": "intfloat/e5-mistral-7b-instruct", "input": "You are an unhelpful assistant."}}
您甚至可以在 Batch 文件中混合聊天补全和 Embeddings 请求,只要您使用的模型同时支持它们(请注意,所有请求都必须使用相同的模型)。
步骤 2:运行 Batch¶
您可以使用与先前示例相同的命令运行 Batch。
步骤 3:检查您的结果¶
您可以通过运行 cat results.jsonl 来检查您的结果
cat results.jsonl
{"id":"vllm-db0f71f7dec244e6bce530e0b4ef908b","custom_id":"request-1","response":{"status_code":200,"request_id":"vllm-batch-3580bf4d4ae54d52b67eee266a6eab20","body":{"id":"embd-33ac2efa7996430184461f2e38529746","object":"list","created":444647,"model":"intfloat/e5-mistral-7b-instruct","data":[{"index":0,"object":"embedding","embedding":[0.016204833984375,0.0092010498046875,0.0018358230590820312,-0.0028228759765625,0.001422882080078125,-0.0031147003173828125,...]}],"usage":{"prompt_tokens":8,"total_tokens":8,"completion_tokens":0}}},"error":null}
...
示例 5:使用 Score 端点¶
附加先决条件¶
- 确保您使用的是
vllm >= 0.7.0。
步骤 1:创建您的 Batch 文件¶
将 Score 请求添加到您的 Batch 文件。以下是一个示例
{"custom_id": "request-1", "method": "POST", "url": "/v1/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/score", "body": {"model": "BAAI/bge-reranker-v2-m3", "text_1": "What is the capital of France?", "text_2": ["The capital of Brazil is Brasilia.", "The capital of France is Paris."]}}
您可以混合聊天补全、Embeddings 和 Score 请求在 Batch 文件中,只要您使用的模型支持所有这些(请注意,所有请求都必须使用相同的模型)。
步骤 2:运行 Batch¶
您可以使用与先前示例相同的命令运行 Batch。
步骤 3:检查您的结果¶
您可以通过运行 cat results.jsonl 来检查您的结果
cat results.jsonl
{"id":"vllm-f87c5c4539184f618e555744a2965987","custom_id":"request-1","response":{"status_code":200,"request_id":"vllm-batch-806ab64512e44071b37d3f7ccd291413","body":{"id":"score-4ee45236897b4d29907d49b01298cdb1","object":"list","created":1737847944,"model":"BAAI/bge-reranker-v2-m3","data":[{"index":0,"object":"score","score":0.0010900497436523438},{"index":1,"object":"score","score":1.0}],"usage":{"prompt_tokens":37,"total_tokens":37,"completion_tokens":0,"prompt_tokens_details":null}}},"error":null}
{"id":"vllm-41990c51a26d4fac8419077f12871099","custom_id":"request-2","response":{"status_code":200,"request_id":"vllm-batch-73ce66379026482699f81974e14e1e99","body":{"id":"score-13f2ffe6ba40460fbf9f7f00ad667d75","object":"list","created":1737847944,"model":"BAAI/bge-reranker-v2-m3","data":[{"index":0,"object":"score","score":0.001094818115234375},{"index":1,"object":"score","score":1.0}],"usage":{"prompt_tokens":37,"total_tokens":37,"completion_tokens":0,"prompt_tokens_details":null}}},"error":null}
示例材料¶
openai_example_batch.jsonl
{"custom_id": "request-1", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are a helpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}
{"custom_id": "request-2", "method": "POST", "url": "/v1/chat/completions", "body": {"model": "meta-llama/Meta-Llama-3-8B-Instruct", "messages": [{"role": "system", "content": "You are an unhelpful assistant."},{"role": "user", "content": "Hello world!"}],"max_completion_tokens": 1000}}