Qwen2.5-Omni¶
来源 https://github.com/vllm-project/vllm-omni/tree/main/examples/online_serving/qwen2_5_omni。
🛠️ 安装¶
请参阅 README.md
运行示例 (Qwen2.5-Omni)¶
启动服务器¶
如果您有自定义的阶段配置文件,请使用以下命令启动服务器
发送多模态请求¶
进入示例文件夹
通过 Python 发送请求¶
Python 客户端支持以下命令行参数:
--query-type(或-q):查询类型 (默认值:mixed_modalities)- 选项:
mixed_modalities、use_audio_in_video、multi_audios、text --video-path(或-v):本地视频文件或 URL 的路径- 如果未提供且 query-type 使用视频,则使用默认视频 URL
- 支持本地文件路径 (自动编码为 base64) 或 HTTP/HTTPS URL。
- 示例:
--video-path /path/to/video.mp4或--video-path https://example.com/video.mp4 --image-path(或-i):本地图像文件或 URL 的路径- 如果未提供且 query-type 使用图像,则使用默认图像 URL。
- 支持本地文件路径 (自动编码为 base64) 或 HTTP/HTTPS URL。
- 支持常见的图像格式:JPEG、PNG、GIF、WebP。
- 示例:
--image-path /path/to/image.jpg或--image-path https://example.com/image.png --audio-path(或-a):本地音频文件或 URL 的路径- 如果未提供且 query-type 使用音频,则使用默认音频 URL。
- 支持本地文件路径 (自动编码为 base64) 或 HTTP/HTTPS URL。
- 支持常见的音频格式:MP3、WAV、OGG、FLAC、M4A。
- 示例:
--audio-path /path/to/audio.wav或--audio-path https://example.com/audio.mp3 --prompt(或-p):自定义文本提示/问题- 如果未提供,则使用所选查询类型的默认提示。
- 示例:
--prompt "What are the main activities shown in this video?"
例如,使用包含所有本地文件的混合模态
python openai_chat_completion_client_for_multimodal_generation.py \
--query-type mixed_modalities \
--video-path /path/to/your/video.mp4 \
--image-path /path/to/your/image.jpg \
--audio-path /path/to/your/audio.wav \
--prompt "Analyze all the media content and provide a comprehensive summary."
通过 curl 发送请求¶
模态控制¶
如果您想控制输出模态,例如只输出文本,您可以运行下面的命令
python openai_chat_completion_client_for_multimodal_generation.py \
--query-type mixed_modalities \
--modalities text
运行本地 Web UI 演示¶
此 Web UI 演示允许用户通过 Web 浏览器与模型进行交互。
运行 Gradio 演示¶
Gradio 演示连接到 vLLM API 服务器。您有两种选择:
选项 1:一步式启动脚本 (推荐)¶
此便捷脚本可同时启动 vLLM 服务器和 Gradio 演示。
此脚本将:1. 在后台启动 vLLM 服务器 2. 等待服务器准备就绪 3. 启动 Gradio 演示 4. 在您按下 Ctrl+C 时处理清理工作。
该脚本支持以下参数:- --model:模型名称/路径 (默认值:Qwen/Qwen2.5-Omni-7B) - --server-port:vLLM 服务器的端口 (默认值:8091) - --gradio-port:Gradio 演示的端口 (默认值:7861) - --stage-configs-path:自定义 stage configs YAML 文件的路径 (可选) - --server-host:vLLM 服务器的 host (默认值:0.0.0.0) - --gradio-ip:Gradio 演示的 IP (默认值:127.0.0.1) - --share:公开分享 Gradio 演示 (创建公开链接)
选项 2:手动启动 (两步过程)¶
第 1 步:启动 vLLM API 服务器
如果您有自定义 stage configs 文件
第 2 步:运行 Gradio 演示
在单独的终端中
然后在您的本地浏览器中打开 https://:7861/ 以与 Web UI 进行交互。
Gradio 脚本支持以下参数:
--model:模型名称/路径 (应与服务器模型匹配)--api-base:vLLM API 服务器的基础 URL (默认值:https://:8091/v1)--ip:Gradio 服务器的 host/IP (默认值:127.0.0.1)--port:Gradio 服务器的端口 (默认值:7861)--share:公开分享 Gradio 演示 (创建公开链接)
常见问题¶
如果遇到有关 librosa 后端错误,请尝试使用以下命令安装 ffmpeg。
示例材料¶
gradio_demo.py
import argparse
import base64
import io
import os
import random
from pathlib import Path
from typing import Any
import gradio as gr
import numpy as np
import soundfile as sf
import torch
from openai import OpenAI
from PIL import Image
SEED = 42
SUPPORTED_MODELS: dict[str, dict[str, Any]] = {
"Qwen/Qwen2.5-Omni-7B": {
"sampling_params": {
"thinker": {
"temperature": 0.0,
"top_p": 1.0,
"top_k": -1,
"max_tokens": 2048,
"detokenize": True,
"repetition_penalty": 1.1,
},
"talker": {
"temperature": 0.0,
"top_p": 1.0,
"top_k": -1,
"max_tokens": 2048,
"detokenize": True,
"repetition_penalty": 1.1,
"stop_token_ids": [8294],
},
"code2wav": {
"temperature": 0.0,
"top_p": 1.0,
"top_k": -1,
"max_tokens": 2048,
"detokenize": True,
"repetition_penalty": 1.1,
},
},
},
}
# Ensure deterministic behavior across runs.
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(SEED)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
def parse_args():
parser = argparse.ArgumentParser(description="Gradio demo for Qwen2.5-Omni online inference.")
parser.add_argument(
"--model",
default="Qwen/Qwen2.5-Omni-7B",
help="Model name/path (should match the server model).",
)
parser.add_argument(
"--api-base",
default="https://:8091/v1",
help="Base URL for the vLLM API server.",
)
parser.add_argument(
"--ip",
default="127.0.0.1",
help="Host/IP for gradio `launch`.",
)
parser.add_argument("--port", type=int, default=7861, help="Port for gradio `launch`.")
parser.add_argument("--share", action="store_true", help="Share the Gradio demo publicly.")
return parser.parse_args()
def build_sampling_params_dict(seed: int, model_key: str) -> list[dict]:
"""Build sampling params as dict for HTTP API mode."""
model_conf = SUPPORTED_MODELS.get(model_key)
if model_conf is None:
raise ValueError(f"Unsupported model '{model_key}'")
sampling_templates: dict[str, dict[str, Any]] = model_conf["sampling_params"]
sampling_params: list[dict] = []
for stage_name, template in sampling_templates.items():
params = dict(template)
params["seed"] = seed
sampling_params.append(params)
return sampling_params
def image_to_base64_data_url(image: Image.Image) -> str:
"""Convert PIL Image to base64 data URL."""
buffered = io.BytesIO()
# Convert to RGB if needed
if image.mode != "RGB":
image = image.convert("RGB")
image.save(buffered, format="JPEG")
img_bytes = buffered.getvalue()
img_b64 = base64.b64encode(img_bytes).decode("utf-8")
return f"data:image/jpeg;base64,{img_b64}"
def audio_to_base64_data_url(audio_data: tuple[np.ndarray, int]) -> str:
"""Convert audio (numpy array, sample_rate) to base64 data URL."""
audio_np, sample_rate = audio_data
# Convert to int16 format for WAV
if audio_np.dtype != np.int16:
# Normalize to [-1, 1] range if needed
if audio_np.dtype == np.float32 or audio_np.dtype == np.float64:
audio_np = np.clip(audio_np, -1.0, 1.0)
audio_np = (audio_np * 32767).astype(np.int16)
else:
audio_np = audio_np.astype(np.int16)
# Write to WAV bytes
buffered = io.BytesIO()
sf.write(buffered, audio_np, sample_rate, format="WAV")
wav_bytes = buffered.getvalue()
wav_b64 = base64.b64encode(wav_bytes).decode("utf-8")
return f"data:audio/wav;base64,{wav_b64}"
def video_to_base64_data_url(video_file: str) -> str:
"""Convert video file to base64 data URL."""
video_path = Path(video_file)
if not video_path.exists():
raise FileNotFoundError(f"Video file not found: {video_file}")
# Detect MIME type from extension
video_path_lower = str(video_path).lower()
if video_path_lower.endswith(".mp4"):
mime_type = "video/mp4"
elif video_path_lower.endswith(".webm"):
mime_type = "video/webm"
elif video_path_lower.endswith(".mov"):
mime_type = "video/quicktime"
elif video_path_lower.endswith(".avi"):
mime_type = "video/x-msvideo"
elif video_path_lower.endswith(".mkv"):
mime_type = "video/x-matroska"
else:
mime_type = "video/mp4"
with open(video_path, "rb") as f:
video_bytes = f.read()
video_b64 = base64.b64encode(video_bytes).decode("utf-8")
return f"data:{mime_type};base64,{video_b64}"
def process_audio_file(
audio_file: Any | None,
) -> tuple[np.ndarray, int] | None:
"""Normalize Gradio audio input to (np.ndarray, sample_rate)."""
if audio_file is None:
return None
sample_rate: int | None = None
audio_np: np.ndarray | None = None
def _load_from_path(path_str: str) -> tuple[np.ndarray, int] | None:
if not path_str:
return None
path = Path(path_str)
if not path.exists():
return None
data, sr = sf.read(path)
if data.ndim > 1:
data = data[:, 0]
return data.astype(np.float32), int(sr)
if isinstance(audio_file, tuple):
if len(audio_file) == 2:
first, second = audio_file
# Case 1: (sample_rate, np.ndarray)
if isinstance(first, (int, float)) and isinstance(second, np.ndarray):
sample_rate = int(first)
audio_np = second
# Case 2: (filepath, (sample_rate, np.ndarray or list))
elif isinstance(first, str):
if isinstance(second, tuple) and len(second) == 2:
sr_candidate, data_candidate = second
if isinstance(sr_candidate, (int, float)) and isinstance(data_candidate, np.ndarray):
sample_rate = int(sr_candidate)
audio_np = data_candidate
if audio_np is None:
loaded = _load_from_path(first)
if loaded is not None:
audio_np, sample_rate = loaded
# Case 3: (None, (sample_rate, np.ndarray))
elif first is None and isinstance(second, tuple) and len(second) == 2:
sr_candidate, data_candidate = second
if isinstance(sr_candidate, (int, float)) and isinstance(data_candidate, np.ndarray):
sample_rate = int(sr_candidate)
audio_np = data_candidate
elif len(audio_file) == 1 and isinstance(audio_file[0], str):
loaded = _load_from_path(audio_file[0])
if loaded is not None:
audio_np, sample_rate = loaded
elif isinstance(audio_file, str):
loaded = _load_from_path(audio_file)
if loaded is not None:
audio_np, sample_rate = loaded
if audio_np is None or sample_rate is None:
return None
if audio_np.ndim > 1:
audio_np = audio_np[:, 0]
return audio_np.astype(np.float32), sample_rate
def process_image_file(image_file: Image.Image | None) -> Image.Image | None:
"""Process image file from Gradio input.
Returns:
PIL Image in RGB mode or None if no image provided.
"""
if image_file is None:
return None
# Convert to RGB if needed
if image_file.mode != "RGB":
image_file = image_file.convert("RGB")
return image_file
def run_inference_api(
client: OpenAI,
model: str,
sampling_params_dict: list[dict],
user_prompt: str,
audio_file: tuple[str, tuple[int, np.ndarray]] | None = None,
image_file: Image.Image | None = None,
video_file: str | None = None,
use_audio_in_video: bool = False,
output_modalities: str | None = None,
):
"""Run inference using OpenAI API client with multimodal support."""
if not user_prompt.strip() and not audio_file and not image_file and not video_file:
return "Please provide at least a text prompt or multimodal input.", None
try:
# Build message content list
content_list = []
# Process audio
audio_data = process_audio_file(audio_file)
if audio_data is not None:
audio_url = audio_to_base64_data_url(audio_data)
content_list.append(
{
"type": "audio_url",
"audio_url": {"url": audio_url},
}
)
# Process image
if image_file is not None:
image_data = process_image_file(image_file)
if image_data is not None:
image_url = image_to_base64_data_url(image_data)
content_list.append(
{
"type": "image_url",
"image_url": {"url": image_url},
}
)
# Process video
mm_processor_kwargs = {}
if video_file is not None:
video_url = video_to_base64_data_url(video_file)
video_content = {
"type": "video_url",
"video_url": {"url": video_url},
}
if use_audio_in_video:
video_content["video_url"]["num_frames"] = 32 # Default max frames
mm_processor_kwargs["use_audio_in_video"] = True
content_list.append(video_content)
# Add text prompt
if user_prompt.strip():
content_list.append(
{
"type": "text",
"text": user_prompt,
}
)
# Build messages
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": (
"You are Qwen, a virtual human developed by the Qwen Team, "
"Alibaba Group, capable of perceiving auditory and visual inputs, "
"as well as generating text and speech."
),
}
],
},
{
"role": "user",
"content": content_list,
},
]
# Build extra_body
extra_body = {
"sampling_params_list": sampling_params_dict,
}
if mm_processor_kwargs:
extra_body["mm_processor_kwargs"] = mm_processor_kwargs
# Parse output modalities
if output_modalities is not None:
output_modalities_list = [m.strip() for m in output_modalities.split(",")]
else:
output_modalities_list = None
# Call API
chat_completion = client.chat.completions.create(
messages=messages,
model=model,
modalities=output_modalities_list,
extra_body=extra_body,
)
# Extract outputs
text_outputs: list[str] = []
audio_output = None
for choice in chat_completion.choices:
if choice.message.content:
text_outputs.append(choice.message.content)
if choice.message.audio:
# Decode base64 audio
audio_data = base64.b64decode(choice.message.audio.data)
# Load audio from bytes
audio_np, sample_rate = sf.read(io.BytesIO(audio_data))
# Convert to mono if needed
if audio_np.ndim > 1:
audio_np = audio_np[:, 0]
audio_output = (int(sample_rate), audio_np.astype(np.float32))
text_response = "\n\n".join(text_outputs) if text_outputs else "No text output."
return text_response, audio_output
except Exception as exc: # pylint: disable=broad-except
return f"Inference failed: {exc}", None
def build_interface(
client: OpenAI,
model: str,
sampling_params_dict: list[dict],
):
"""Build Gradio interface for API server mode."""
def run_inference(
user_prompt: str,
audio_file: tuple[str, tuple[int, np.ndarray]] | None,
image_file: Image.Image | None,
video_file: str | None,
use_audio_in_video: bool,
output_modalities: str | None = None,
):
return run_inference_api(
client,
model,
sampling_params_dict,
user_prompt,
audio_file,
image_file,
video_file,
use_audio_in_video,
output_modalities,
)
css = """
.media-input-container {
display: flex;
gap: 10px;
}
.media-input-container > div {
flex: 1;
}
.media-input-container .image-input,
.media-input-container .audio-input {
height: 300px;
}
.media-input-container .video-column {
height: 300px;
display: flex;
flex-direction: column;
}
.media-input-container .video-input {
flex: 1;
min-height: 0;
}
#generate-btn button {
width: 100%;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# vLLM-Omni Online Serving Demo")
gr.Markdown(f"**Model:** {model} \n\n")
with gr.Column():
with gr.Row():
input_box = gr.Textbox(
label="Text Prompt",
placeholder="For example: Describe what happens in the media inputs.",
lines=4,
scale=1,
)
with gr.Row(elem_classes="media-input-container"):
image_input = gr.Image(
label="Image Input (optional)",
type="pil",
sources=["upload"],
scale=1,
elem_classes="image-input",
)
with gr.Column(scale=1, elem_classes="video-column"):
video_input = gr.Video(
label="Video Input (optional)",
sources=["upload"],
elem_classes="video-input",
)
use_audio_in_video_checkbox = gr.Checkbox(
label="Use audio from video",
value=False,
info="Extract the video's audio track when provided.",
)
audio_input = gr.Audio(
label="Audio Input (optional)",
type="numpy",
sources=["upload", "microphone"],
scale=1,
elem_classes="audio-input",
)
with gr.Row():
output_modalities = gr.Textbox(
label="Output Modalities",
placeholder="For example: text, image, video. Use comma to separate multiple modalities.",
lines=1,
scale=1,
)
with gr.Row():
generate_btn = gr.Button(
"Generate",
variant="primary",
size="lg",
elem_id="generate-btn",
)
with gr.Row():
text_output = gr.Textbox(label="Text Output", lines=10, scale=2)
audio_output = gr.Audio(label="Audio Output", interactive=False, scale=1)
generate_btn.click(
fn=run_inference,
inputs=[input_box, audio_input, image_input, video_input, use_audio_in_video_checkbox, output_modalities],
outputs=[text_output, audio_output],
)
demo.queue()
return demo
def main():
args = parse_args()
model_name = "/".join(args.model.split("/")[-2:])
assert model_name in SUPPORTED_MODELS, (
f"Unsupported model '{model_name}'. Supported models: {SUPPORTED_MODELS.keys()}"
)
# Initialize OpenAI client
print(f"Connecting to API server at: {args.api_base}")
client = OpenAI(
api_key="EMPTY",
base_url=args.api_base,
)
print("✓ Connected to API server")
# Build sampling params
sampling_params_dict = build_sampling_params_dict(SEED, model_name)
demo = build_interface(
client,
args.model,
sampling_params_dict,
)
try:
demo.launch(
server_name=args.ip,
server_port=args.port,
share=args.share,
)
except KeyboardInterrupt:
print("\nShutting down...")
if __name__ == "__main__":
main()
openai_chat_completion_client_for_multimodal_generation.py
import base64
import os
import requests
from openai import OpenAI
from vllm.assets.audio import AudioAsset
from vllm.utils.argparse_utils import FlexibleArgumentParser
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://:8091/v1"
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
SEED = 42
def encode_base64_content_from_url(content_url: str) -> str:
"""Encode a content retrieved from a remote url to base64 format."""
with requests.get(content_url) as response:
response.raise_for_status()
result = base64.b64encode(response.content).decode("utf-8")
return result
def encode_base64_content_from_file(file_path: str) -> str:
"""Encode a local file to base64 format."""
with open(file_path, "rb") as f:
content = f.read()
result = base64.b64encode(content).decode("utf-8")
return result
def get_video_url_from_path(video_path: str | None) -> str:
"""Convert a video path (local file or URL) to a video URL format for the API.
If video_path is None or empty, returns the default URL.
If video_path is a local file path, encodes it to base64 data URL.
If video_path is a URL, returns it as-is.
"""
if not video_path:
# Default video URL
return "https://hugging-face.cn/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4"
# Check if it's a URL (starts with http:// or https://)
if video_path.startswith(("http://", "https://")):
return video_path
# Otherwise, treat it as a local file path
if not os.path.exists(video_path):
raise FileNotFoundError(f"Video file not found: {video_path}")
# Detect video MIME type from file extension
video_path_lower = video_path.lower()
if video_path_lower.endswith(".mp4"):
mime_type = "video/mp4"
elif video_path_lower.endswith(".webm"):
mime_type = "video/webm"
elif video_path_lower.endswith(".mov"):
mime_type = "video/quicktime"
elif video_path_lower.endswith(".avi"):
mime_type = "video/x-msvideo"
elif video_path_lower.endswith(".mkv"):
mime_type = "video/x-matroska"
else:
# Default to mp4 if extension is unknown
mime_type = "video/mp4"
video_base64 = encode_base64_content_from_file(video_path)
return f"data:{mime_type};base64,{video_base64}"
def get_image_url_from_path(image_path: str | None) -> str:
"""Convert an image path (local file or URL) to an image URL format for the API.
If image_path is None or empty, returns the default URL.
If image_path is a local file path, encodes it to base64 data URL.
If image_path is a URL, returns it as-is.
"""
if not image_path:
# Default image URL
return "https://vllm-public-assets.s3.us-west-2.amazonaws.com/vision_model_images/cherry_blossom.jpg"
# Check if it's a URL (starts with http:// or https://)
if image_path.startswith(("http://", "https://")):
return image_path
# Otherwise, treat it as a local file path
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image file not found: {image_path}")
# Detect image MIME type from file extension
image_path_lower = image_path.lower()
if image_path_lower.endswith((".jpg", ".jpeg")):
mime_type = "image/jpeg"
elif image_path_lower.endswith(".png"):
mime_type = "image/png"
elif image_path_lower.endswith(".gif"):
mime_type = "image/gif"
elif image_path_lower.endswith(".webp"):
mime_type = "image/webp"
else:
# Default to jpeg if extension is unknown
mime_type = "image/jpeg"
image_base64 = encode_base64_content_from_file(image_path)
return f"data:{mime_type};base64,{image_base64}"
def get_audio_url_from_path(audio_path: str | None) -> str:
"""Convert an audio path (local file or URL) to an audio URL format for the API.
If audio_path is None or empty, returns the default URL.
If audio_path is a local file path, encodes it to base64 data URL.
If audio_path is a URL, returns it as-is.
"""
if not audio_path:
# Default audio URL
return AudioAsset("mary_had_lamb").url
# Check if it's a URL (starts with http:// or https://)
if audio_path.startswith(("http://", "https://")):
return audio_path
# Otherwise, treat it as a local file path
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# Detect audio MIME type from file extension
audio_path_lower = audio_path.lower()
if audio_path_lower.endswith((".mp3", ".mpeg")):
mime_type = "audio/mpeg"
elif audio_path_lower.endswith(".wav"):
mime_type = "audio/wav"
elif audio_path_lower.endswith(".ogg"):
mime_type = "audio/ogg"
elif audio_path_lower.endswith(".flac"):
mime_type = "audio/flac"
elif audio_path_lower.endswith(".m4a"):
mime_type = "audio/mp4"
else:
# Default to wav if extension is unknown
mime_type = "audio/wav"
audio_base64 = encode_base64_content_from_file(audio_path)
return f"data:{mime_type};base64,{audio_base64}"
def get_system_prompt():
return {
"role": "system",
"content": [
{
"type": "text",
"text": (
"You are Qwen, a virtual human developed by the Qwen Team, "
"Alibaba Group, capable of perceiving auditory and visual inputs, "
"as well as generating text and speech."
),
}
],
}
def get_text_query(custom_prompt: str | None = None):
question = (
custom_prompt or "Explain the system architecture for a scalable audio generation pipeline. Answer in 15 words."
)
prompt = {
"role": "user",
"content": [
{
"type": "text",
"text": f"{question}",
}
],
}
return prompt
def get_mixed_modalities_query(
video_path: str | None = None,
image_path: str | None = None,
audio_path: str | None = None,
custom_prompt: str | None = None,
):
question = (
custom_prompt or "What is recited in the audio? What is the content of this image? Why is this video funny?"
)
video_url = get_video_url_from_path(video_path)
image_url = get_image_url_from_path(image_path)
audio_url = get_audio_url_from_path(audio_path)
prompt = {
"role": "user",
"content": [
{
"type": "audio_url",
"audio_url": {"url": audio_url},
},
{
"type": "image_url",
"image_url": {"url": image_url},
},
{
"type": "video_url",
"video_url": {"url": video_url},
},
{
"type": "text",
"text": f"{question}",
},
],
}
return prompt
def get_use_audio_in_video_query(video_path: str | None = None, custom_prompt: str | None = None):
question = custom_prompt or "Describe the content of the video, then convert what the baby say into text."
video_url = get_video_url_from_path(video_path)
prompt = {
"role": "user",
"content": [
{
"type": "video_url",
"video_url": {
"url": video_url,
"num_frames": 16,
},
},
{
"type": "text",
"text": f"{question}",
},
],
}
return prompt
def get_multi_audios_query(audio_path: str | None = None, custom_prompt: str | None = None):
question = custom_prompt or "Are these two audio clips the same?"
audio_url = get_audio_url_from_path(audio_path)
prompt = {
"role": "user",
"content": [
{
"type": "audio_url",
"audio_url": {"url": audio_url},
},
{
"type": "audio_url",
"audio_url": {"url": AudioAsset("winning_call").url},
},
{
"type": "text",
"text": f"{question}",
},
],
}
return prompt
query_map = {
"mixed_modalities": get_mixed_modalities_query,
"use_audio_in_video": get_use_audio_in_video_query,
"multi_audios": get_multi_audios_query,
"text": get_text_query,
}
def run_multimodal_generation(args) -> None:
model_name = "Qwen/Qwen2.5-Omni-7B"
thinker_sampling_params = {
"temperature": 0.0, # Deterministic - no randomness
"top_p": 1.0, # Disable nucleus sampling
"top_k": -1, # Disable top-k sampling
"max_tokens": 2048,
"seed": SEED, # Fixed seed for sampling
"detokenize": True,
"repetition_penalty": 1.1,
}
talker_sampling_params = {
"temperature": 0.9,
"top_p": 0.8,
"top_k": 40,
"max_tokens": 2048,
"seed": SEED, # Fixed seed for sampling
"detokenize": True,
"repetition_penalty": 1.05,
"stop_token_ids": [8294],
}
code2wav_sampling_params = {
"temperature": 0.0, # Deterministic - no randomness
"top_p": 1.0, # Disable nucleus sampling
"top_k": -1, # Disable top-k sampling
"max_tokens": 2048,
"seed": SEED, # Fixed seed for sampling
"detokenize": True,
"repetition_penalty": 1.1,
}
sampling_params_list = [
thinker_sampling_params,
talker_sampling_params,
code2wav_sampling_params,
]
# Get paths and custom prompt from args
video_path = getattr(args, "video_path", None)
image_path = getattr(args, "image_path", None)
audio_path = getattr(args, "audio_path", None)
custom_prompt = getattr(args, "prompt", None)
# Get the query function and call it with appropriate parameters
query_func = query_map[args.query_type]
if args.query_type == "mixed_modalities":
prompt = query_func(
video_path=video_path, image_path=image_path, audio_path=audio_path, custom_prompt=custom_prompt
)
elif args.query_type == "use_audio_in_video":
prompt = query_func(video_path=video_path, custom_prompt=custom_prompt)
elif args.query_type == "multi_audios":
prompt = query_func(audio_path=audio_path, custom_prompt=custom_prompt)
elif args.query_type == "text":
prompt = query_func(custom_prompt=custom_prompt)
else:
prompt = query_func()
extra_body = {
"sampling_params_list": sampling_params_list # Optional, it has a default setting in stage_configs of the corresponding model.
}
if args.query_type == "use_audio_in_video":
extra_body["mm_processor_kwargs"] = {"use_audio_in_video": True}
if args.modalities is not None:
output_modalities = args.modalities.split(",")
else:
output_modalities = None
chat_completion = client.chat.completions.create(
messages=[
get_system_prompt(),
prompt,
],
model=model_name,
modalities=output_modalities,
extra_body=extra_body,
)
count = 0
for choice in chat_completion.choices:
if choice.message.audio:
audio_data = base64.b64decode(choice.message.audio.data)
audio_file_path = f"audio_{count}.wav"
with open(audio_file_path, "wb") as f:
f.write(audio_data)
print(f"Audio saved to {audio_file_path}")
count += 1
elif choice.message.content:
print("Chat completion output from text:", choice.message.content)
def parse_args():
parser = FlexibleArgumentParser(description="Demo on using vLLM for offline inference with audio language models")
parser.add_argument(
"--query-type",
"-q",
type=str,
default="mixed_modalities",
choices=query_map.keys(),
help="Query type.",
)
parser.add_argument(
"--video-path",
"-v",
type=str,
default=None,
help="Path to local video file or URL. If not provided and query-type uses video, uses default video URL.",
)
parser.add_argument(
"--image-path",
"-i",
type=str,
default=None,
help="Path to local image file or URL. If not provided and query-type uses image, uses default image URL.",
)
parser.add_argument(
"--audio-path",
"-a",
type=str,
default=None,
help="Path to local audio file or URL. If not provided and query-type uses audio, uses default audio URL.",
)
parser.add_argument(
"--prompt",
"-p",
type=str,
default=None,
help="Custom text prompt/question to use instead of the default prompt for the selected query type.",
)
parser.add_argument(
"--modalities",
type=str,
default=None,
help="Output modalities to use for the prompts.",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
run_multimodal_generation(args)
run_curl_multimodal_generation.sh
#!/usr/bin/env bash
set -euo pipefail
# Default query type
QUERY_TYPE="${1:-mixed_modalities}"
# Default modalities argument
MODALITIES="${2:-null}"
# Validate query type
if [[ ! "$QUERY_TYPE" =~ ^(mixed_modalities|use_audio_in_video|multi_audios|text)$ ]]; then
echo "Error: Invalid query type '$QUERY_TYPE'"
echo "Usage: $0 [mixed_modalities|use_audio_in_video|multi_audios|text] [modalities]"
echo " mixed_modalities: Audio + Image + Video + Text query"
echo " use_audio_in_video: Video + Text query (with audio extraction from video)"
echo " multi_audios: Two audio clips + Text query"
echo " text: Text query"
echo " modalities: Modalities parameter (default: null)"
exit 1
fi
SEED=42
thinker_sampling_params='{
"temperature": 0.0,
"top_p": 1.0,
"top_k": -1,
"max_tokens": 2048,
"seed": 42,
"detokenize": true,
"repetition_penalty": 1.1
}'
talker_sampling_params='{
"temperature": 0.9,
"top_p": 0.8,
"top_k": 40,
"max_tokens": 2048,
"seed": 42,
"detokenize": true,
"repetition_penalty": 1.05,
"stop_token_ids": [8294]
}'
code2wav_sampling_params='{
"temperature": 0.0,
"top_p": 1.0,
"top_k": -1,
"max_tokens": 2048,
"seed": 42,
"detokenize": true,
"repetition_penalty": 1.1
}'
# Above is optional, it has a default setting in stage_configs of the corresponding model.
# Define URLs for assets
MARY_HAD_LAMB_AUDIO_URL="https://vllm-public-assets.s3.us-west-2.amazonaws.com/multimodal_asset/mary_had_lamb.ogg"
WINNING_CALL_AUDIO_URL="https://vllm-public-assets.s3.us-west-2.amazonaws.com/multimodal_asset/winning_call.ogg"
CHERRY_BLOSSOM_IMAGE_URL="https://vllm-public-assets.s3.us-west-2.amazonaws.com/vision_model_images/cherry_blossom.jpg"
SAMPLE_VIDEO_URL="https://hugging-face.cn/datasets/raushan-testing-hf/videos-test/resolve/main/sample_demo_1.mp4"
# Build user content and extra fields based on query type
case "$QUERY_TYPE" in
text)
user_content='[
{
"type": "text",
"text": "Explain the system architecture for a scalable audio generation pipeline. Answer in 15 words."
}
]'
sampling_params_list='[
'"$thinker_sampling_params"',
'"$talker_sampling_params"',
'"$code2wav_sampling_params"'
]'
mm_processor_kwargs="{}"
;;
mixed_modalities)
user_content='[
{
"type": "audio_url",
"audio_url": {
"url": "'"$MARY_HAD_LAMB_AUDIO_URL"'"
}
},
{
"type": "image_url",
"image_url": {
"url": "'"$CHERRY_BLOSSOM_IMAGE_URL"'"
}
},
{
"type": "video_url",
"video_url": {
"url": "'"$SAMPLE_VIDEO_URL"'"
}
},
{
"type": "text",
"text": "What is recited in the audio? What is the content of this image? Why is this video funny?"
}
]'
sampling_params_list='[
'"$thinker_sampling_params"',
'"$talker_sampling_params"',
'"$code2wav_sampling_params"'
]'
mm_processor_kwargs="{}"
;;
use_audio_in_video)
user_content='[
{
"type": "video_url",
"video_url": {
"url": "'"$SAMPLE_VIDEO_URL"'"
}
},
{
"type": "text",
"text": "Describe the content of the video, then convert what the baby say into text."
}
]'
sampling_params_list='[
'"$thinker_sampling_params"',
'"$talker_sampling_params"',
'"$code2wav_sampling_params"'
]'
mm_processor_kwargs='{
"use_audio_in_video": true
}'
;;
multi_audios)
user_content='[
{
"type": "audio_url",
"audio_url": {
"url": "'"$MARY_HAD_LAMB_AUDIO_URL"'"
}
},
{
"type": "audio_url",
"audio_url": {
"url": "'"$WINNING_CALL_AUDIO_URL"'"
}
},
{
"type": "text",
"text": "Are these two audio clips the same?"
}
]'
sampling_params_list='[
'"$thinker_sampling_params"',
'"$talker_sampling_params"',
'"$code2wav_sampling_params"'
]'
mm_processor_kwargs="{}"
;;
esac
echo "Running query type: $QUERY_TYPE"
echo ""
output=$(curl -sS -X POST https://:8091/v1/chat/completions \
-H "Content-Type: application/json" \
-d @- <<EOF
{
"model": "Qwen/Qwen2.5-Omni-7B",
"sampling_params_list": $sampling_params_list,
"mm_processor_kwargs": $mm_processor_kwargs,
"modalities": $MODALITIES,
"messages": [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."
}
]
},
{
"role": "user",
"content": $user_content
}
]
}
EOF
)
# Here it only shows the text content of the first choice. Audio content has many binaries, so it's not displayed here.
echo "Output of request: $(echo "$output" | jq '.choices[0].message.content')"
run_gradio_demo.sh
#!/bin/bash
# Convenience script to launch both vLLM server and Gradio demo for Qwen2.5-Omni
#
# Usage:
# ./run_gradio_demo.sh [OPTIONS]
#
# Example:
# ./run_gradio_demo.sh --model Qwen/Qwen2.5-Omni-7B --server-port 8091 --gradio-port 7861
set -e
# Default values
MODEL="Qwen/Qwen2.5-Omni-7B"
SERVER_PORT=8091
GRADIO_PORT=7861
STAGE_CONFIGS_PATH=""
SERVER_HOST="0.0.0.0"
GRADIO_IP="127.0.0.1"
GRADIO_SHARE=false
# Parse command line arguments
while [[ $# -gt 0 ]]; do
case $1 in
--model)
MODEL="$2"
shift 2
;;
--server-port)
SERVER_PORT="$2"
shift 2
;;
--gradio-port)
GRADIO_PORT="$2"
shift 2
;;
--stage-configs-path)
STAGE_CONFIGS_PATH="$2"
shift 2
;;
--server-host)
SERVER_HOST="$2"
shift 2
;;
--gradio-ip)
GRADIO_IP="$2"
shift 2
;;
--share)
GRADIO_SHARE=true
shift
;;
--help)
echo "Usage: $0 [OPTIONS]"
echo ""
echo "Options:"
echo " --model MODEL Model name/path (default: Qwen/Qwen2.5-Omni-7B)"
echo " --server-port PORT Port for vLLM server (default: 8091)"
echo " --gradio-port PORT Port for Gradio demo (default: 7861)"
echo " --stage-configs-path PATH Path to custom stage configs YAML file (optional)"
echo " --server-host HOST Host for vLLM server (default: 0.0.0.0)"
echo " --gradio-ip IP IP for Gradio demo (default: 127.0.0.1)"
echo " --share Share Gradio demo publicly"
echo " --help Show this help message"
echo ""
exit 0
;;
*)
echo "Unknown option: $1"
echo "Use --help for usage information"
exit 1
;;
esac
done
# Get the directory where this script is located
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
API_BASE="https://:${SERVER_PORT}/v1"
HEALTH_URL="https://:${SERVER_PORT}/health"
echo "=========================================="
echo "Starting vLLM-Omni Gradio Demo"
echo "=========================================="
echo "Model: $MODEL"
echo "Server: http://${SERVER_HOST}:${SERVER_PORT}"
echo "Gradio: http://${GRADIO_IP}:${GRADIO_PORT}"
echo "=========================================="
# Build vLLM server command
SERVER_CMD=("vllm" "serve" "$MODEL" "--omni" "--port" "$SERVER_PORT" "--host" "$SERVER_HOST")
if [ -n "$STAGE_CONFIGS_PATH" ]; then
SERVER_CMD+=("--stage-configs-path" "$STAGE_CONFIGS_PATH")
fi
# Function to cleanup on exit
cleanup() {
echo ""
echo "Shutting down..."
if [ -n "$SERVER_PID" ]; then
echo "Stopping vLLM server (PID: $SERVER_PID)..."
kill "$SERVER_PID" 2>/dev/null || true
wait "$SERVER_PID" 2>/dev/null || true
fi
if [ -n "$GRADIO_PID" ]; then
echo "Stopping Gradio demo (PID: $GRADIO_PID)..."
kill "$GRADIO_PID" 2>/dev/null || true
wait "$GRADIO_PID" 2>/dev/null || true
fi
echo "Cleanup complete"
exit 0
}
# Set up signal handlers
trap cleanup SIGINT SIGTERM
# Start vLLM server with output shown in real-time and saved to log
echo ""
echo "Starting vLLM server..."
LOG_FILE="/tmp/vllm_server_${SERVER_PORT}.log"
"${SERVER_CMD[@]}" 2>&1 | tee "$LOG_FILE" &
SERVER_PID=$!
# Start a background process to monitor the log for startup completion
STARTUP_COMPLETE=false
TAIL_PID=""
# Function to cleanup tail process
cleanup_tail() {
if [ -n "$TAIL_PID" ]; then
kill "$TAIL_PID" 2>/dev/null || true
wait "$TAIL_PID" 2>/dev/null || true
fi
}
# Wait for server to be ready by checking log output
echo ""
echo "Waiting for vLLM server to be ready (checking for 'Application startup complete' message)..."
echo ""
# Monitor log file for startup completion message
MAX_WAIT=300 # 5 minutes timeout as fallback
ELAPSED=0
# Use a temporary file to track startup completion
STARTUP_FLAG="/tmp/vllm_startup_flag_${SERVER_PORT}.tmp"
rm -f "$STARTUP_FLAG"
# Start monitoring in background
(
tail -f "$LOG_FILE" 2>/dev/null | grep -m 1 "Application startup complete" > /dev/null && touch "$STARTUP_FLAG"
) &
TAIL_PID=$!
while [ $ELAPSED -lt $MAX_WAIT ]; do
# Check if startup flag file exists (startup complete)
if [ -f "$STARTUP_FLAG" ]; then
cleanup_tail
echo ""
echo "✓ vLLM server is ready!"
STARTUP_COMPLETE=true
break
fi
# Check if server process is still running
if ! kill -0 "$SERVER_PID" 2>/dev/null; then
cleanup_tail
echo ""
echo "Error: vLLM server failed to start (process terminated)"
wait "$SERVER_PID" 2>/dev/null || true
exit 1
fi
sleep 1
ELAPSED=$((ELAPSED + 1))
done
cleanup_tail
rm -f "$STARTUP_FLAG"
if [ "$STARTUP_COMPLETE" != "true" ]; then
echo ""
echo "Error: vLLM server did not complete startup within ${MAX_WAIT} seconds"
kill "$SERVER_PID" 2>/dev/null || true
exit 1
fi
# Start Gradio demo
echo ""
echo "Starting Gradio demo..."
cd "$SCRIPT_DIR"
GRADIO_CMD=("python" "gradio_demo.py" "--model" "$MODEL" "--api-base" "$API_BASE" "--ip" "$GRADIO_IP" "--port" "$GRADIO_PORT")
if [ "$GRADIO_SHARE" = true ]; then
GRADIO_CMD+=("--share")
fi
"${GRADIO_CMD[@]}" > /tmp/gradio_demo.log 2>&1 &
GRADIO_PID=$!
echo ""
echo "=========================================="
echo "Both services are running!"
echo "=========================================="
echo "vLLM Server: http://${SERVER_HOST}:${SERVER_PORT}"
echo "Gradio Demo: http://${GRADIO_IP}:${GRADIO_PORT}"
echo ""
echo "Press Ctrl+C to stop both services"
echo "=========================================="
echo ""
# Wait for either process to exit
wait $SERVER_PID $GRADIO_PID || true
cleanup