跳到内容

环境变量

vLLM 使用以下环境变量来配置系统

警告

请注意,VLLM_PORTVLLM_HOST_IP 设置了 vLLM 的端口和 IP,用于 内部使用。它们不是 API 服务器的端口和 IP。如果您使用 --host $VLLM_HOST_IP--port $VLLM_PORT 来启动 API 服务器,将无法正常工作。

vLLM 使用的所有环境变量都以 VLLM_ 开头。Kubernetes 用户请特别注意:请勿将服务命名为 vllm,否则 Kubernetes 设置的环境变量可能会与 vLLM 的环境变量冲突,因为 Kubernetes 会为每个服务设置以大写服务名称为前缀的环境变量

代码
environment_variables: dict[str, Callable[[], Any]] = {

    # ================== Installation Time Env Vars ==================

    # Target device of vLLM, supporting [cuda (by default),
    # rocm, neuron, cpu]
    "VLLM_TARGET_DEVICE":
    lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda"),

    # Maximum number of compilation jobs to run in parallel.
    # By default this is the number of CPUs
    "MAX_JOBS":
    lambda: os.getenv("MAX_JOBS", None),

    # Number of threads to use for nvcc
    # By default this is 1.
    # If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
    "NVCC_THREADS":
    lambda: os.getenv("NVCC_THREADS", None),

    # If set, vllm will use precompiled binaries (*.so)
    "VLLM_USE_PRECOMPILED":
    lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")) or bool(
        os.environ.get("VLLM_PRECOMPILED_WHEEL_LOCATION")),

    # Whether to force using nightly wheel in python build.
    # This is used for testing the nightly wheel in python build.
    "VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL":
    lambda: bool(int(os.getenv("VLLM_TEST_USE_PRECOMPILED_NIGHTLY_WHEEL", "0"))
                 ),

    # CMake build type
    # If not set, defaults to "Debug" or "RelWithDebInfo"
    # Available options: "Debug", "Release", "RelWithDebInfo"
    "CMAKE_BUILD_TYPE":
    lambda: os.getenv("CMAKE_BUILD_TYPE"),

    # If set, vllm will print verbose logs during installation
    "VERBOSE":
    lambda: bool(int(os.getenv('VERBOSE', '0'))),

    # Root directory for vLLM configuration files
    # Defaults to `~/.config/vllm` unless `XDG_CONFIG_HOME` is set
    # Note that this not only affects how vllm finds its configuration files
    # during runtime, but also affects how vllm installs its configuration
    # files during **installation**.
    "VLLM_CONFIG_ROOT":
    lambda: os.path.expanduser(
        os.getenv(
            "VLLM_CONFIG_ROOT",
            os.path.join(get_default_config_root(), "vllm"),
        )),

    # ================== Runtime Env Vars ==================

    # Root directory for vLLM cache files
    # Defaults to `~/.cache/vllm` unless `XDG_CACHE_HOME` is set
    "VLLM_CACHE_ROOT":
    lambda: os.path.expanduser(
        os.getenv(
            "VLLM_CACHE_ROOT",
            os.path.join(get_default_cache_root(), "vllm"),
        )),

    # used in distributed environment to determine the ip address
    # of the current node, when the node has multiple network interfaces.
    # If you are using multi-node inference, you should set this differently
    # on each node.
    'VLLM_HOST_IP':
    lambda: os.getenv('VLLM_HOST_IP', ""),

    # used in distributed environment to manually set the communication port
    # Note: if VLLM_PORT is set, and some code asks for multiple ports, the
    # VLLM_PORT will be used as the first port, and the rest will be generated
    # by incrementing the VLLM_PORT value.
    'VLLM_PORT':
    get_vllm_port,

    # path used for ipc when the frontend api server is running in
    # multi-processing mode to communicate with the backend engine process.
    'VLLM_RPC_BASE_PATH':
    lambda: os.getenv('VLLM_RPC_BASE_PATH', tempfile.gettempdir()),

    # If true, will load models from ModelScope instead of Hugging Face Hub.
    # note that the value is true or false, not numbers
    "VLLM_USE_MODELSCOPE":
    lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",

    # Interval in seconds to log a warning message when the ring buffer is full
    "VLLM_RINGBUFFER_WARNING_INTERVAL":
    lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),

    # path to cudatoolkit home directory, under which should be bin, include,
    # and lib directories.
    "CUDA_HOME":
    lambda: os.environ.get("CUDA_HOME", None),

    # Path to the NCCL library file. It is needed because nccl>=2.19 brought
    # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
    "VLLM_NCCL_SO_PATH":
    lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),

    # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
    # library file in the locations specified by `LD_LIBRARY_PATH`
    "LD_LIBRARY_PATH":
    lambda: os.environ.get("LD_LIBRARY_PATH", None),

    # flag to control if vllm should use triton flash attention
    "VLLM_USE_TRITON_FLASH_ATTN":
    lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
             ("true", "1")),

    # Use separate prefill and decode kernels for V1 attention instead of
    # the unified triton kernel.
    "VLLM_V1_USE_PREFILL_DECODE_ATTENTION":
    lambda:
    (os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in
     ("true", "1")),

    # Force vllm to use a specific flash-attention version (2 or 3), only valid
    # when using the flash-attention backend.
    "VLLM_FLASH_ATTN_VERSION":
    lambda: maybe_convert_int(os.environ.get("VLLM_FLASH_ATTN_VERSION", None)),

    # Internal flag to enable Dynamo fullgraph capture
    "VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE":
    lambda: bool(
        os.environ.get("VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE", "1") != "0"),

    # Feature flag to enable/disable Inductor standalone compile.
    # In torch <= 2.7 we ignore this flag; in torch >= 2.8 this is
    # enabled by default.
    "VLLM_USE_STANDALONE_COMPILE":
    lambda: os.environ.get("VLLM_USE_STANDALONE_COMPILE", "1") == "1",

    # local rank of the process in the distributed setting, used to determine
    # the GPU device id
    "LOCAL_RANK":
    lambda: int(os.environ.get("LOCAL_RANK", "0")),

    # used to control the visible devices in the distributed setting
    "CUDA_VISIBLE_DEVICES":
    lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),

    # timeout for each iteration in the engine
    "VLLM_ENGINE_ITERATION_TIMEOUT_S":
    lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),

    # API key for vLLM API server
    "VLLM_API_KEY":
    lambda: os.environ.get("VLLM_API_KEY", None),

    # Whether to log responses from API Server for debugging
    "VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
    lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
                           ).lower() == "true",

    # S3 access information, used for tensorizer to load model from S3
    "S3_ACCESS_KEY_ID":
    lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
    "S3_SECRET_ACCESS_KEY":
    lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
    "S3_ENDPOINT_URL":
    lambda: os.environ.get("S3_ENDPOINT_URL", None),

    # Usage stats collection
    "VLLM_USAGE_STATS_SERVER":
    lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
    "VLLM_NO_USAGE_STATS":
    lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
    "VLLM_DO_NOT_TRACK":
    lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
        "DO_NOT_TRACK", None) or "0") == "1",
    "VLLM_USAGE_SOURCE":
    lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),

    # Logging configuration
    # If set to 0, vllm will not configure logging
    # If set to 1, vllm will configure logging using the default configuration
    #    or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
    "VLLM_CONFIGURE_LOGGING":
    lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
    "VLLM_LOGGING_CONFIG_PATH":
    lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),

    # this is used for configuring the default logging level
    "VLLM_LOGGING_LEVEL":
    lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO").upper(),

    # if set, VLLM_LOGGING_PREFIX will be prepended to all log messages
    "VLLM_LOGGING_PREFIX":
    lambda: os.getenv("VLLM_LOGGING_PREFIX", ""),

    # if set, vllm will call logits processors in a thread pool with this many
    # threads. This is useful when using custom logits processors that either
    # (a) launch additional CUDA kernels or (b) do significant CPU-bound work
    # while not holding the python GIL, or both.
    "VLLM_LOGITS_PROCESSOR_THREADS":
    lambda: int(os.getenv("VLLM_LOGITS_PROCESSOR_THREADS", "0"))
    if "VLLM_LOGITS_PROCESSOR_THREADS" in os.environ else None,

    # Trace function calls
    # If set to 1, vllm will trace function calls
    # Useful for debugging
    "VLLM_TRACE_FUNCTION":
    lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),

    # Backend for attention computation
    # Available options:
    # - "TORCH_SDPA": use torch.nn.MultiheadAttention
    # - "FLASH_ATTN": use FlashAttention
    # - "XFORMERS": use XFormers
    # - "ROCM_FLASH": use ROCmFlashAttention
    # - "FLASHINFER": use flashinfer
    # - "FLASHMLA": use FlashMLA
    "VLLM_ATTENTION_BACKEND":
    lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),

    # If set, vllm will use flashinfer sampler
    "VLLM_USE_FLASHINFER_SAMPLER":
    lambda: bool(int(os.environ["VLLM_USE_FLASHINFER_SAMPLER"]))
    if "VLLM_USE_FLASHINFER_SAMPLER" in os.environ else None,

    # If set, vllm will force flashinfer to use tensor cores;
    # otherwise will use heuristic based on model architecture.
    "VLLM_FLASHINFER_FORCE_TENSOR_CORES":
    lambda: bool(int(os.getenv("VLLM_FLASHINFER_FORCE_TENSOR_CORES", "0"))),

    # Pipeline stage partition strategy
    "VLLM_PP_LAYER_PARTITION":
    lambda: os.getenv("VLLM_PP_LAYER_PARTITION", None),

    # (CPU backend only) CPU key-value cache space.
    # default is None and will be set as 4 GB
    "VLLM_CPU_KVCACHE_SPACE":
    lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0"))
    if "VLLM_CPU_KVCACHE_SPACE" in os.environ else None,

    # (CPU backend only) CPU core ids bound by OpenMP threads, e.g., "0-31",
    # "0,1,2", "0-31,33". CPU cores of different ranks are separated by '|'.
    "VLLM_CPU_OMP_THREADS_BIND":
    lambda: os.getenv("VLLM_CPU_OMP_THREADS_BIND", "auto"),

    # (CPU backend only) CPU cores not used by OMP threads .
    # Those CPU cores will not be used by OMP threads of a rank.
    "VLLM_CPU_NUM_OF_RESERVED_CPU":
    lambda: int(os.getenv("VLLM_CPU_NUM_OF_RESERVED_CPU", "0"))
    if "VLLM_CPU_NUM_OF_RESERVED_CPU" in os.environ else None,

    # (CPU backend only) whether to use prepack for MoE layer. This will be
    # passed to ipex.llm.modules.GatedMLPMOE. On unsupported CPUs, you might
    # need to set this to "0" (False).
    "VLLM_CPU_MOE_PREPACK":
    lambda: bool(int(os.getenv("VLLM_CPU_MOE_PREPACK", "1"))),

    # (CPU backend only) whether to use SGL kernels, optimized for small batch.
    "VLLM_CPU_SGL_KERNEL":
    lambda: bool(int(os.getenv("VLLM_CPU_SGL_KERNEL", "0"))),

    # If the env var is set, then all workers will execute as separate
    # processes from the engine, and we use the same mechanism to trigger
    # execution on all workers.
    # Run vLLM with VLLM_USE_RAY_SPMD_WORKER=1 to enable it.
    "VLLM_USE_RAY_SPMD_WORKER":
    lambda: bool(int(os.getenv("VLLM_USE_RAY_SPMD_WORKER", "0"))),

    # If the env var is set, it uses the Ray's Compiled Graph
    # (previously known as ADAG) API which optimizes the
    # control plane overhead.
    # Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
    # Note that this variable is set to 1 in V1 by default
    # when ray distributed executor is used.
    "VLLM_USE_RAY_COMPILED_DAG":
    lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG", "0"))),

    # If the env var is set, Ray Compiled Graph uses the specified
    # channel type to communicate between workers belonging to
    # different pipeline-parallel stages.
    # Available options:
    # - "auto": use the default channel type
    # - "nccl": use NCCL for communication
    # - "shm": use shared memory and gRPC for communication
    # This flag is ignored if VLLM_USE_RAY_COMPILED_DAG is not set.
    "VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE":
    lambda: os.getenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "auto"),

    # If the env var is set, it enables GPU communication overlap
    # (experimental feature) in Ray's Compiled Graph. This flag is ignored if
    # VLLM_USE_RAY_COMPILED_DAG is not set.
    "VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM":
    lambda: bool(int(os.getenv("VLLM_USE_RAY_COMPILED_DAG_OVERLAP_COMM", "0"))
                 ),

    # Use dedicated multiprocess context for workers.
    # Both spawn and fork work
    "VLLM_WORKER_MULTIPROC_METHOD":
    lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),

    # Path to the cache for storing downloaded assets
    "VLLM_ASSETS_CACHE":
    lambda: os.path.expanduser(
        os.getenv(
            "VLLM_ASSETS_CACHE",
            os.path.join(get_default_cache_root(), "vllm", "assets"),
        )),

    # Timeout for fetching images when serving multimodal models
    # Default is 5 seconds
    "VLLM_IMAGE_FETCH_TIMEOUT":
    lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),

    # Timeout for fetching videos when serving multimodal models
    # Default is 30 seconds
    "VLLM_VIDEO_FETCH_TIMEOUT":
    lambda: int(os.getenv("VLLM_VIDEO_FETCH_TIMEOUT", "30")),

    # Timeout for fetching audio when serving multimodal models
    # Default is 10 seconds
    "VLLM_AUDIO_FETCH_TIMEOUT":
    lambda: int(os.getenv("VLLM_AUDIO_FETCH_TIMEOUT", "10")),

    # Maximum filesize in MB for a single audio file when processing
    # speech-to-text requests. Files larger than this will be rejected.
    # Default is 25 MB
    "VLLM_MAX_AUDIO_CLIP_FILESIZE_MB":
    lambda: int(os.getenv("VLLM_MAX_AUDIO_CLIP_FILESIZE_MB", "25")),

    # Backend for Video IO
    # - "opencv": Default backend that uses OpenCV stream buffered backend.
    #
    # Custom backend implementations can be registered
    # via `@VIDEO_LOADER_REGISTRY.register("my_custom_video_loader")` and
    # imported at runtime.
    # If a non-existing backend is used, an AssertionError will be thrown.
    "VLLM_VIDEO_LOADER_BACKEND":
    lambda: os.getenv("VLLM_VIDEO_LOADER_BACKEND", "opencv"),

    # Cache size (in GiB) for multimodal input cache
    # Default is 4 GiB
    "VLLM_MM_INPUT_CACHE_GIB":
    lambda: int(os.getenv("VLLM_MM_INPUT_CACHE_GIB", "4")),

    # Path to the XLA persistent cache directory.
    # Only used for XLA devices such as TPUs.
    "VLLM_XLA_CACHE_PATH":
    lambda: os.path.expanduser(
        os.getenv(
            "VLLM_XLA_CACHE_PATH",
            os.path.join(get_default_cache_root(), "vllm", "xla_cache"),
        )),

    # If set, assert on XLA recompilation after each execution step.
    "VLLM_XLA_CHECK_RECOMPILATION":
    lambda: bool(int(os.getenv("VLLM_XLA_CHECK_RECOMPILATION", "0"))),

    # Enable SPMD mode for TPU backend.
    "VLLM_XLA_USE_SPMD":
    lambda: bool(int(os.getenv("VLLM_XLA_USE_SPMD", "0"))),
    "VLLM_FUSED_MOE_CHUNK_SIZE":
    lambda: int(os.getenv("VLLM_FUSED_MOE_CHUNK_SIZE", "32768")),
    # Control whether to use fused MoE activation chunking. Current chunking
    # logic is incompatible with torch.compile and causes IMA. See issue
    # https://github.com/vllm-project/vllm/issues/19631.
    "VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING":
    lambda: bool(
        int(os.getenv("VLLM_ENABLE_FUSED_MOE_ACTIVATION_CHUNKING", "1"))),

    # If set, vllm will skip the deprecation warnings.
    "VLLM_NO_DEPRECATION_WARNING":
    lambda: bool(int(os.getenv("VLLM_NO_DEPRECATION_WARNING", "0"))),

    # If set, the OpenAI API server will stay alive even after the underlying
    # AsyncLLMEngine errors and stops serving requests
    "VLLM_KEEP_ALIVE_ON_ENGINE_DEATH":
    lambda: bool(os.getenv("VLLM_KEEP_ALIVE_ON_ENGINE_DEATH", 0)),

    # If the env var VLLM_ALLOW_LONG_MAX_MODEL_LEN is set, it allows
    # the user to specify a max sequence length greater than
    # the max length derived from the model's config.json.
    # To enable this, set VLLM_ALLOW_LONG_MAX_MODEL_LEN=1.
    "VLLM_ALLOW_LONG_MAX_MODEL_LEN":
    lambda:
    (os.environ.get("VLLM_ALLOW_LONG_MAX_MODEL_LEN", "0").strip().lower() in
     ("1", "true")),

    # If set, forces FP8 Marlin to be used for FP8 quantization regardless
    # of the hardware support for FP8 compute.
    "VLLM_TEST_FORCE_FP8_MARLIN":
    lambda:
    (os.environ.get("VLLM_TEST_FORCE_FP8_MARLIN", "0").strip().lower() in
     ("1", "true")),
    "VLLM_TEST_FORCE_LOAD_FORMAT":
    lambda: os.getenv("VLLM_TEST_FORCE_LOAD_FORMAT", "dummy"),

    # Time in ms for the zmq client to wait for a response from the backend
    # server for simple data operations
    "VLLM_RPC_TIMEOUT":
    lambda: int(os.getenv("VLLM_RPC_TIMEOUT", "10000")),

    # Timeout in seconds for keeping HTTP connections alive in API server
    "VLLM_HTTP_TIMEOUT_KEEP_ALIVE":
    lambda: int(os.environ.get("VLLM_HTTP_TIMEOUT_KEEP_ALIVE", "5")),

    # a list of plugin names to load, separated by commas.
    # if this is not set, it means all plugins will be loaded
    # if this is set to an empty string, no plugins will be loaded
    "VLLM_PLUGINS":
    lambda: None if "VLLM_PLUGINS" not in os.environ else os.environ[
        "VLLM_PLUGINS"].split(","),

    # a local directory to look in for unrecognized LoRA adapters.
    # only works if plugins are enabled and
    # VLLM_ALLOW_RUNTIME_LORA_UPDATING is enabled.
    "VLLM_LORA_RESOLVER_CACHE_DIR":
    lambda: os.getenv("VLLM_LORA_RESOLVER_CACHE_DIR", None),

    # Enables torch profiler if set. Path to the directory where torch profiler
    # traces are saved. Note that it must be an absolute path.
    "VLLM_TORCH_PROFILER_DIR":
    lambda: (None if os.getenv("VLLM_TORCH_PROFILER_DIR", None) is None else os
             .path.expanduser(os.getenv("VLLM_TORCH_PROFILER_DIR", "."))),

    # If set, vLLM will use Triton implementations of AWQ.
    "VLLM_USE_TRITON_AWQ":
    lambda: bool(int(os.getenv("VLLM_USE_TRITON_AWQ", "0"))),

    # If set, allow loading or unloading lora adapters in runtime,
    "VLLM_ALLOW_RUNTIME_LORA_UPDATING":
    lambda:
    (os.environ.get("VLLM_ALLOW_RUNTIME_LORA_UPDATING", "0").strip().lower() in
     ("1", "true")),

    # By default, vLLM will check the peer-to-peer capability itself,
    # in case of broken drivers. See https://github.com/vllm-project/vllm/blob/a9b15c606fea67a072416ea0ea115261a2756058/vllm/distributed/device_communicators/custom_all_reduce_utils.py#L101-L108 for details. # noqa
    # If this env var is set to 1, vLLM will skip the peer-to-peer check,
    # and trust the driver's peer-to-peer capability report.
    "VLLM_SKIP_P2P_CHECK":
    lambda: os.getenv("VLLM_SKIP_P2P_CHECK", "0") == "1",

    # List of quantization kernels that should be disabled, used for testing
    # and performance comparisons. Currently only affects MPLinearKernel
    # selection
    # (kernels: MacheteLinearKernel, MarlinLinearKernel, ExllamaLinearKernel)
    "VLLM_DISABLED_KERNELS":
    lambda: [] if "VLLM_DISABLED_KERNELS" not in os.environ else os.environ[
        "VLLM_DISABLED_KERNELS"].split(","),

    # If set, use the V1 code path.
    "VLLM_USE_V1":
    lambda: bool(int(os.getenv("VLLM_USE_V1", "1"))),

    # Disable aiter ops unless specifically enabled.
    # Acts as a parent switch to enable the rest of the other operations.
    "VLLM_ROCM_USE_AITER":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER", "False").lower() in
             ("true", "1")),

    # Whether to use aiter paged attention.
    # By default is disabled.
    "VLLM_ROCM_USE_AITER_PAGED_ATTN":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_PAGED_ATTN", "False").lower() in
             ("true", "1")),

    # use aiter linear op if aiter ops are enabled
    # The following list of related ops
    # - scaled_mm (per-tensor / rowwise)
    "VLLM_ROCM_USE_AITER_LINEAR":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_LINEAR", "True").lower() in
             ("true", "1")),

    # Whether to use aiter moe ops.
    # By default is enabled.
    "VLLM_ROCM_USE_AITER_MOE":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_MOE", "True").lower() in
             ("true", "1")),

    # use aiter rms norm op if aiter ops are enabled.
    "VLLM_ROCM_USE_AITER_RMSNORM":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_RMSNORM", "True").lower() in
             ("true", "1")),

    # Whether to use aiter mla ops.
    # By default is enabled.
    "VLLM_ROCM_USE_AITER_MLA":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_MLA", "True").lower() in
             ("true", "1")),

    # Whether to use aiter mha ops.
    # By default is enabled.
    "VLLM_ROCM_USE_AITER_MHA":
    lambda: (os.getenv("VLLM_ROCM_USE_AITER_MHA", "True").lower() in
             ("true", "1")),

    # use rocm skinny gemms
    "VLLM_ROCM_USE_SKINNY_GEMM":
    lambda: (os.getenv("VLLM_ROCM_USE_SKINNY_GEMM", "True").lower() in
             ("true", "1")),

    # Pad the fp8 weights to 256 bytes for ROCm
    "VLLM_ROCM_FP8_PADDING":
    lambda: bool(int(os.getenv("VLLM_ROCM_FP8_PADDING", "1"))),

    # Pad the weights for the moe kernel
    "VLLM_ROCM_MOE_PADDING":
    lambda: bool(int(os.getenv("VLLM_ROCM_MOE_PADDING", "1"))),

    # custom paged attention kernel for MI3* cards
    "VLLM_ROCM_CUSTOM_PAGED_ATTN":
    lambda: (os.getenv("VLLM_ROCM_CUSTOM_PAGED_ATTN", "True").lower() in
             ("true", "1")),

    # Custom quick allreduce kernel for MI3* cards
    # Choice of quantization level: FP, INT8, INT6, INT4 or NONE
    # Recommended for large models to get allreduce
    "VLLM_ROCM_QUICK_REDUCE_QUANTIZATION":
    lambda: os.getenv("VLLM_ROCM_QUICK_REDUCE_QUANTIZATION", "NONE").upper(),

    # Custom quick allreduce kernel for MI3* cards
    # Due to the lack of the bfloat16 asm instruction, bfloat16
    # kernels are slower than fp16,
    # If environment variable is set to 1, the input is converted to fp16
    "VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16":
    lambda:
    (os.getenv("VLLM_ROCM_QUICK_REDUCE_CAST_BF16_TO_FP16", "True").lower() in
     ("true", "1")),

    # Custom quick allreduce kernel for MI3* cards.
    # Controls the maximum allowed number of data bytes(MB) for custom quick
    # allreduce communication.
    # Default: 2048 MB.
    # Data exceeding this size will use either custom allreduce or RCCL
    # communication.
    "VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB":
    lambda: maybe_convert_int(
        os.environ.get("VLLM_ROCM_QUICK_REDUCE_MAX_SIZE_BYTES_MB", None)),

    # Divisor for dynamic query scale factor calculation for FP8 KV Cache
    "Q_SCALE_CONSTANT":
    lambda: int(os.getenv("Q_SCALE_CONSTANT", "200")),
    # Divisor for dynamic key scale factor calculation for FP8 KV Cache
    "K_SCALE_CONSTANT":
    lambda: int(os.getenv("K_SCALE_CONSTANT", "200")),
    # Divisor for dynamic value scale factor calculation for FP8 KV Cache
    "V_SCALE_CONSTANT":
    lambda: int(os.getenv("V_SCALE_CONSTANT", "100")),

    # If set, enable multiprocessing in LLM for the V1 code path.
    "VLLM_ENABLE_V1_MULTIPROCESSING":
    lambda: bool(int(os.getenv("VLLM_ENABLE_V1_MULTIPROCESSING", "1"))),
    "VLLM_LOG_BATCHSIZE_INTERVAL":
    lambda: float(os.getenv("VLLM_LOG_BATCHSIZE_INTERVAL", "-1")),
    "VLLM_DISABLE_COMPILE_CACHE":
    lambda: bool(int(os.getenv("VLLM_DISABLE_COMPILE_CACHE", "0"))),

    # If set, vllm will run in development mode, which will enable
    # some additional endpoints for developing and debugging,
    # e.g. `/reset_prefix_cache`
    "VLLM_SERVER_DEV_MODE":
    lambda: bool(int(os.getenv("VLLM_SERVER_DEV_MODE", "0"))),

    # Controls the maximum number of requests to handle in a
    # single asyncio task when processing per-token outputs in the
    # V1 AsyncLLM interface. It is applicable when handling a high
    # concurrency of streaming requests.
    # Setting this too high can result in a higher variance of
    # inter-message latencies. Setting it too low can negatively impact
    # TTFT and overall throughput.
    "VLLM_V1_OUTPUT_PROC_CHUNK_SIZE":
    lambda: int(os.getenv("VLLM_V1_OUTPUT_PROC_CHUNK_SIZE", "128")),

    # If set, vLLM will disable the MLA attention optimizations.
    "VLLM_MLA_DISABLE":
    lambda: bool(int(os.getenv("VLLM_MLA_DISABLE", "0"))),

    # Number of GPUs per worker in Ray, if it is set to be a fraction,
    # it allows ray to schedule multiple actors on a single GPU,
    # so that users can colocate other actors on the same GPUs as vLLM.
    "VLLM_RAY_PER_WORKER_GPUS":
    lambda: float(os.getenv("VLLM_RAY_PER_WORKER_GPUS", "1.0")),

    # Bundle indices for Ray, if it is set, it can control precisely
    # which indices are used for the Ray bundle, for every worker.
    # Format: comma-separated list of integers, e.g. "0,1,2,3"
    "VLLM_RAY_BUNDLE_INDICES":
    lambda: os.getenv("VLLM_RAY_BUNDLE_INDICES", ""),

    # In some system, find_loaded_library() may not work. So we allow users to
    # specify the path through environment variable VLLM_CUDART_SO_PATH.
    "VLLM_CUDART_SO_PATH":
    lambda: os.getenv("VLLM_CUDART_SO_PATH", None),

    # Rank of the process in the data parallel setting
    "VLLM_DP_RANK":
    lambda: int(os.getenv("VLLM_DP_RANK", "0")),

    # Rank of the process in the data parallel setting.
    # Defaults to VLLM_DP_RANK when not set.
    "VLLM_DP_RANK_LOCAL":
    lambda: int(
        os.getenv("VLLM_DP_RANK_LOCAL", sys.modules[__name__].VLLM_DP_RANK)),

    # World size of the data parallel setting
    "VLLM_DP_SIZE":
    lambda: int(os.getenv("VLLM_DP_SIZE", "1")),

    # IP address of the master node in the data parallel setting
    "VLLM_DP_MASTER_IP":
    lambda: os.getenv("VLLM_DP_MASTER_IP", "127.0.0.1"),

    # Port of the master node in the data parallel setting
    "VLLM_DP_MASTER_PORT":
    lambda: int(os.getenv("VLLM_DP_MASTER_PORT", "0")),

    # In the context of executing MoE models with Data-Parallel, Expert-Parallel
    # and Batched All-to-All dispatch/combine kernels, VLLM_MOE_DP_CHUNK_SIZE
    # dictates the quantum of tokens that can be dispatched from a DP
    # rank. All DP ranks process the activations in VLLM_MOE_DP_CHUNK_SIZE
    # units.
    "VLLM_MOE_DP_CHUNK_SIZE":
    lambda: int(os.getenv("VLLM_MOE_DP_CHUNK_SIZE", "256")),

    # Randomize inputs during dummy runs when using Data Parallel
    "VLLM_RANDOMIZE_DP_DUMMY_INPUTS":
    lambda: os.environ.get("VLLM_RANDOMIZE_DP_DUMMY_INPUTS", "0") == "1",

    # Whether to use S3 path for model loading in CI via RunAI Streamer
    "VLLM_CI_USE_S3":
    lambda: os.environ.get("VLLM_CI_USE_S3", "0") == "1",

    # Use model_redirect to redirect the model name to a local folder.
    # `model_redirect` can be a json file mapping the model between
    # repo_id and local folder:
    # {"meta-llama/Llama-3.2-1B": "/tmp/Llama-3.2-1B"}
    # or a space separated values table file:
    # meta-llama/Llama-3.2-1B   /tmp/Llama-3.2-1B
    "VLLM_MODEL_REDIRECT_PATH":
    lambda: os.environ.get("VLLM_MODEL_REDIRECT_PATH", None),

    # Whether to use atomicAdd reduce in gptq/awq marlin kernel.
    "VLLM_MARLIN_USE_ATOMIC_ADD":
    lambda: os.environ.get("VLLM_MARLIN_USE_ATOMIC_ADD", "0") == "1",

    # Whether to turn on the outlines cache for V0
    # This cache is unbounded and on disk, so it's not safe to use in
    # an environment with potentially malicious users.
    "VLLM_V0_USE_OUTLINES_CACHE":
    lambda: os.environ.get("VLLM_V0_USE_OUTLINES_CACHE", "0") == "1",

    # Whether to turn on the outlines cache for V1
    # This cache is unbounded and on disk, so it's not safe to use in
    # an environment with potentially malicious users.
    "VLLM_V1_USE_OUTLINES_CACHE":
    lambda: os.environ.get("VLLM_V1_USE_OUTLINES_CACHE", "0") == "1",

    # Gap between padding buckets for the forward pass. So we have
    # 8, we will run forward pass with [16, 24, 32, ...].
    "VLLM_TPU_BUCKET_PADDING_GAP":
    lambda: int(os.environ["VLLM_TPU_BUCKET_PADDING_GAP"])
    if "VLLM_TPU_BUCKET_PADDING_GAP" in os.environ else 0,
    "VLLM_TPU_MOST_MODEL_LEN":
    lambda: maybe_convert_int(os.environ.get("VLLM_TPU_MOST_MODEL_LEN", None)),

    # Allow use of DeepGemm kernels for fused moe ops.
    "VLLM_USE_DEEP_GEMM":
    lambda: bool(int(os.getenv("VLLM_USE_DEEP_GEMM", "0"))),

    # Allow use of FlashInfer MoE kernels for fused moe ops.
    "VLLM_USE_FLASHINFER_MOE_FP8":
    lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP8", "0"))),

    # Allow use of FlashInfer CUTLASS kernels for fused moe ops.
    "VLLM_USE_FLASHINFER_MOE_FP4":
    lambda: bool(int(os.getenv("VLLM_USE_FLASHINFER_MOE_FP4", "0"))),

    # Control the cache sized used by the xgrammar compiler. The default
    # of 512 MB should be enough for roughly 1000 JSON schemas.
    # It can be changed with this variable if needed for some reason.
    "VLLM_XGRAMMAR_CACHE_MB":
    lambda: int(os.getenv("VLLM_XGRAMMAR_CACHE_MB", "512")),

    # Control the threshold for msgspec to use 'zero copy' for
    # serialization/deserialization of tensors. Tensors below
    # this limit will be encoded into the msgpack buffer, and
    # tensors above will instead be sent via a separate message.
    # While the sending side still actually copies the tensor
    # in all cases, on the receiving side, tensors above this
    # limit will actually be zero-copy decoded.
    "VLLM_MSGPACK_ZERO_COPY_THRESHOLD":
    lambda: int(os.getenv("VLLM_MSGPACK_ZERO_COPY_THRESHOLD", "256")),

    # If set, allow insecure serialization using pickle.
    # This is useful for environments where it is deemed safe to use the
    # insecure method and it is needed for some reason.
    "VLLM_ALLOW_INSECURE_SERIALIZATION":
    lambda: bool(int(os.getenv("VLLM_ALLOW_INSECURE_SERIALIZATION", "0"))),

    # IP address used for NIXL handshake between remote agents.
    "VLLM_NIXL_SIDE_CHANNEL_HOST":
    lambda: os.getenv("VLLM_NIXL_SIDE_CHANNEL_HOST", "localhost"),

    # Port used for NIXL handshake between remote agents.
    "VLLM_NIXL_SIDE_CHANNEL_PORT":
    lambda: int(os.getenv("VLLM_NIXL_SIDE_CHANNEL_PORT", "5557")),

    # all2all backend for vllm's expert parallel communication
    # Available options:
    # - "naive": naive all2all implementation using all-reduce
    # - "pplx": use pplx kernels
    # - "deepep_high_throughput", use deepep high-throughput kernels
    # - "deepep_low_latency", use deepep low-latency kernels
    "VLLM_ALL2ALL_BACKEND":
    lambda: os.getenv("VLLM_ALL2ALL_BACKEND", "naive"),

    # Control the maximum number of tokens per expert supported by the
    # NVFP4 MoE CUTLASS Kernel. This value is used to create a buffer for
    # the blockscale tensor of activations NVFP4 Quantization.
    # This is used to prevent the kernel from running out of memory.
    "VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE":
    lambda: int(os.getenv("VLLM_MAX_TOKENS_PER_EXPERT_FP4_MOE", "163840")),

    # Regex timeout for use by the vLLM tool parsing plugins.
    "VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS":
    lambda: int(os.getenv("VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS", "1")),

    # Reduce CPU usage when vLLM is idle. Enabling this will incur small
    # latency penalty when a request eventually comes.
    "VLLM_SLEEP_WHEN_IDLE":
    lambda: bool(int(os.getenv("VLLM_SLEEP_WHEN_IDLE", "0"))),

    # Control the max chunk bytes (in MB) for the rpc message queue.
    # Object larger than this threshold will be broadcast to worker
    # processes via zmq.
    "VLLM_MQ_MAX_CHUNK_BYTES_MB":
    lambda: int(os.getenv("VLLM_MQ_MAX_CHUNK_BYTES_MB", "16")),

    # Timeout in seconds for execute_model RPC calls in multiprocessing
    # executor (only applies when TP > 1).
    "VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS":
    lambda: int(os.getenv("VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS", "300")),

    # KV Cache layout used throughout vllm.
    # Some common values are:
    # - NHD
    # - HND
    # Where N=num_blocks, H=num_heads and D=head_size. The default value will
    # leave the layout choice to the backend. Mind that backends may only
    # implement and support a subset of all possible layouts.
    "VLLM_KV_CACHE_LAYOUT":
    lambda: os.getenv("VLLM_KV_CACHE_LAYOUT", None),

    # Enable checking whether the generated logits contain NaNs,
    # indicating corrupted output. Useful for debugging low level bugs
    # or bad hardware but it may add compute overhead.
    "VLLM_COMPUTE_NANS_IN_LOGITS":
    lambda: bool(int(os.getenv("VLLM_COMPUTE_NANS_IN_LOGITS", "0"))),

    # Controls whether or not emulations are used for NVFP4
    # generations on machines < 100 for compressed-tensors
    # models
    "VLLM_USE_NVFP4_CT_EMULATIONS":
    lambda: bool(int(os.getenv("VLLM_USE_NVFP4_CT_EMULATIONS", "0"))),

    # Time (in seconds) after which the KV cache on the producer side is
    # automatically cleared if no READ notification is received from the
    # consumer. This is only applicable when using NixlConnector in a
    # disaggregated decode-prefill setup.
    "VLLM_NIXL_ABORT_REQUEST_TIMEOUT":
    lambda: int(os.getenv("VLLM_NIXL_ABORT_REQUEST_TIMEOUT", "120")),

    # Controls whether or not to use cudnn prefill
    "VLLM_USE_CUDNN_PREFILL":
    lambda: bool(int(os.getenv("VLLM_USE_CUDNN_PREFILL", "0"))),

    # If set to 1, use the TRTLLM Decode Attention backend in flashinfer.
    "VLLM_USE_TRTLLM_DECODE_ATTENTION":
    lambda: os.getenv("VLLM_USE_TRTLLM_DECODE_ATTENTION", None),

    # Controls garbage collection during CUDA graph capture.
    # If set to 0 (default), enables GC freezing to speed up capture time.
    # If set to 1, allows GC to run during capture.
    "VLLM_ENABLE_CUDAGRAPH_GC":
    lambda: bool(int(os.getenv("VLLM_ENABLE_CUDAGRAPH_GC", "0"))),

    # Used to force set up loopback IP
    "VLLM_LOOPBACK_IP":
    lambda: os.getenv("VLLM_LOOPBACK_IP", ""),

    # Used to set the process name prefix for vLLM processes.
    # This is useful for debugging and monitoring purposes.
    # The default value is "VLLM".
    "VLLM_PROCESS_NAME_PREFIX":
    lambda: os.getenv("VLLM_PROCESS_NAME_PREFIX", "VLLM"),
}