推理输出#

vLLM 为推理模型提供支持,例如 DeepSeek R1,这些模型旨在生成包含推理步骤和最终结论的输出。

推理模型在其输出中返回一个额外的 reasoning_content 字段,其中包含导致最终结论的推理步骤。此字段在其他模型的输出中不存在。

支持的模型#

vLLM 目前支持以下推理模型

模型系列

解析器名称

结构化输出支持

工具调用

DeepSeek R1 系列

deepseek_r1

guided_json, guided_regex

QwQ-32B

deepseek_r1

guided_json, guided_regex

IBM Granite 3.2 语言模型

granite

  • IBM Granite 3.2 推理默认禁用;要启用它,您还必须在 chat_template_kwargs 中传递 thinking=True

快速入门#

要使用推理模型,您需要在向聊天完成端点发出请求时指定 --enable-reasoning--reasoning-parser 标志。--reasoning-parser 标志指定用于从模型输出中提取推理内容的推理解析器。

vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
    --enable-reasoning --reasoning-parser deepseek_r1

接下来,向应返回响应中推理内容的模型发出请求。

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://127.0.0.1:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
response = client.chat.completions.create(model=model, messages=messages)

reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content

print("reasoning_content:", reasoning_content)
print("content:", content)

reasoning_content 字段包含导致最终结论的推理步骤,而 content 字段包含最终结论。

流式聊天完成#

推理模型也支持流式聊天完成。reasoning_content 字段在 聊天完成响应块delta 字段中可用。

{
    "id": "chatcmpl-123",
    "object": "chat.completion.chunk",
    "created": 1694268190,
    "model": "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "system_fingerprint": "fp_44709d6fcb",
    "choices": [
        {
            "index": 0,
            "delta": {
                "role": "assistant",
                "reasoning_content": "is",
            },
            "logprobs": null,
            "finish_reason": null
        }
    ]
}

OpenAI Python 客户端库未正式支持流式输出的 reasoning_content 属性。但是客户端支持响应中的额外属性。您可以使用 hasattr 来检查 reasoning_content 属性是否在响应中。例如

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://127.0.0.1:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
# For granite, add: `extra_body={"chat_template_kwargs": {"thinking": True}}`
stream = client.chat.completions.create(model=model,
                                        messages=messages,
                                        stream=True)

print("client: Start streaming chat completions...")
printed_reasoning_content = False
printed_content = False

for chunk in stream:
    reasoning_content = None
    content = None
    # Check the content is reasoning_content or content
    if hasattr(chunk.choices[0].delta, "reasoning_content"):
        reasoning_content = chunk.choices[0].delta.reasoning_content
    elif hasattr(chunk.choices[0].delta, "content"):
        content = chunk.choices[0].delta.content

    if reasoning_content is not None:
        if not printed_reasoning_content:
            printed_reasoning_content = True
            print("reasoning_content:", end="", flush=True)
        print(reasoning_content, end="", flush=True)
    elif content is not None:
        if not printed_content:
            printed_content = True
            print("\ncontent:", end="", flush=True)
        # Extract and print the content
        print(content, end="", flush=True)

请记住在访问 reasoning_content 之前检查响应中是否存在它。您可以查看示例

结构化输出#

推理内容在结构化输出中也可用。像 xgrammar 这样的结构化输出引擎将使用推理内容来生成结构化输出。它目前仅在 v0 引擎中受支持。

VLLM_USE_V1=0 vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
    --enable-reasoning --reasoning-parser deepseek_r1

请注意,必须将 VLLM_USE_V1 环境变量设置为 0 才能使用 v0 引擎。

from openai import OpenAI
from pydantic import BaseModel

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://127.0.0.1:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id


class People(BaseModel):
    name: str
    age: int


json_schema = People.model_json_schema()

prompt = ("Generate a JSON with the name and age of one random person.")
completion = client.chat.completions.create(
    model=model,
    messages=[{
        "role": "user",
        "content": prompt,
    }],
    extra_body={"guided_json": json_schema},
)
print("reasoning_content: ", completion.choices[0].message.reasoning_content)
print("content: ", completion.choices[0].message.content)

工具调用#

当工具调用和推理解析器都启用时,推理内容也可用。此外,工具调用仅从 content 字段解析函数,而不是从 reasoning_content 字段解析函数。

from openai import OpenAI

client = OpenAI(base_url="https://127.0.0.1:8000/v1", api_key="dummy")

tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "City and state, e.g., 'San Francisco, CA'"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location", "unit"]
        }
    }
}]

response = client.chat.completions.create(
    model=client.models.list().data[0].id,
    messages=[{"role": "user", "content": "What's the weather like in San Francisco?"}],
    tools=tools,
    tool_choice="auto"
)

print(response)
tool_call = response.choices[0].message.tool_calls[0].function

print(f"reasoning_content: {response.choices[0].message.reasoning_content}")
print(f"Function called: {tool_call.name}")
print(f"Arguments: {tool_call.arguments}")

更多示例,请参考 examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py

局限性#

  • 推理内容仅适用于在线服务的聊天完成端点 (/v1/chat/completions)。

如何支持新的推理模型#

您可以添加一个新的 ReasoningParser,类似于 vllm/entrypoints/openai/reasoning_parsers/deepseek_r1_reasoning_parser.py

# import the required packages

from vllm.entrypoints.openai.reasoning_parsers.abs_reasoning_parsers import (
    ReasoningParser, ReasoningParserManager)
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
                                              DeltaMessage)

# define a reasoning parser and register it to vllm
# the name list in register_module can be used
# in --reasoning-parser.
@ReasoningParserManager.register_module(["example"])
class ExampleParser(ReasoningParser):
    def __init__(self, tokenizer: AnyTokenizer):
        super().__init__(tokenizer)

    def extract_reasoning_content_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
    ) -> Union[DeltaMessage, None]:
        """
        Instance method that should be implemented for extracting reasoning
        from an incomplete response; for use when handling reasoning calls and
        streaming. Has to be an instance method because  it requires state -
        the current tokens/diffs, but also the information about what has
        previously been parsed and extracted (see constructor)
        """

    def extract_reasoning_content(
            self, model_output: str, request: ChatCompletionRequest
    ) -> tuple[Optional[str], Optional[str]]:
        """
        Extract reasoning content from a complete model-generated string.

        Used for non-streaming responses where we have the entire model response
        available before sending to the client.

        Parameters:
        model_output: str
            The model-generated string to extract reasoning content from.

        request: ChatCompletionRequest
            The request object that was used to generate the model_output.

        Returns:
        tuple[Optional[str], Optional[str]]
            A tuple containing the reasoning content and the content.
        """

此外,要启用结构化输出,您需要创建一个新的 Reasoner,类似于 vllm/model_executor/guided_decoding/reasoner/deepseek_reasoner.py 中的那个。

@dataclass
class DeepSeekReasoner(Reasoner):
    """
    Reasoner for DeepSeek R series models.
    """
    start_token_id: int
    end_token_id: int

    start_token: str = "<think>"
    end_token: str = "</think>"

    @classmethod
    def from_tokenizer(cls, tokenizer: PreTrainedTokenizer) -> Reasoner:
        return cls(start_token_id=tokenizer.encode(
            "<think>", add_special_tokens=False)[0],
                   end_token_id=tokenizer.encode("</think>",
                                                 add_special_tokens=False)[0])

    def is_reasoning_end(self, input_ids: list[int]) -> bool:
        return self.end_token_id in input_ids
    ...

xgrammar 这样的结构化输出引擎将使用 end_token_id 来检查推理内容是否存在于模型输出中,如果存在则跳过结构化输出。

最后,您可以使用 --enable-reasoning--reasoning-parser 标志为模型启用推理。

vllm serve <model_tag> \
    --enable-reasoning --reasoning-parser example