Gradio OpenAI 聊天机器人 Webserver

源文件 examples/online_serving/gradio_openai_chatbot_webserver.py

# SPDX-License-Identifier: Apache-2.0
"""Example for starting a Gradio OpenAI Chatbot Webserver
Start vLLM API server:
    vllm serve meta-llama/Llama-2-7b-chat-hf

Start Gradio OpenAI Chatbot Webserver:
    python examples/online_serving/gradio_openai_chatbot_webserver.py \
                    -m meta-llama/Llama-2-7b-chat-hf

Note that `pip install --upgrade gradio` is needed to run this example.
More details: https://github.com/gradio-app/gradio

If your antivirus software blocks the download of frpc for gradio,
you can install it manually by following these steps:

1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64
2. Rename the downloaded file to: frpc_linux_amd64_v0.3
3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc
"""

import argparse

import gradio as gr
from openai import OpenAI


def format_history_to_openai(history):
    history_openai_format = [
        {"role": "system", "content": "You are a great AI assistant."}
    ]
    for human, assistant in history:
        history_openai_format.append({"role": "user", "content": human})
        history_openai_format.append({"role": "assistant", "content": assistant})
    return history_openai_format


def predict(message, history, client, model_name, temp, stop_token_ids):
    # Format history to OpenAI chat format
    history_openai_format = format_history_to_openai(history)
    history_openai_format.append({"role": "user", "content": message})

    # Send request to OpenAI API (vLLM server)
    stream = client.chat.completions.create(
        model=model_name,
        messages=history_openai_format,
        temperature=temp,
        stream=True,
        extra_body={
            "repetition_penalty": 1,
            "stop_token_ids": [int(id.strip()) for id in stop_token_ids.split(",")]
            if stop_token_ids
            else [],
        },
    )

    # Collect all chunks and concatenate them into a full message
    full_message = ""
    for chunk in stream:
        full_message += chunk.choices[0].delta.content or ""

    # Return the full message as a single response
    return full_message


def parse_args():
    parser = argparse.ArgumentParser(
        description="Chatbot Interface with Customizable Parameters"
    )
    parser.add_argument(
        "--model-url", type=str, default="http://localhost:8000/v1", help="Model URL"
    )
    parser.add_argument(
        "-m", "--model", type=str, required=True, help="Model name for the chatbot"
    )
    parser.add_argument(
        "--temp", type=float, default=0.8, help="Temperature for text generation"
    )
    parser.add_argument(
        "--stop-token-ids", type=str, default="", help="Comma-separated stop token IDs"
    )
    parser.add_argument("--host", type=str, default=None)
    parser.add_argument("--port", type=int, default=8001)
    return parser.parse_args()


def build_gradio_interface(client, model_name, temp, stop_token_ids):
    def chat_predict(message, history):
        return predict(message, history, client, model_name, temp, stop_token_ids)

    return gr.ChatInterface(
        fn=chat_predict,
        title="Chatbot Interface",
        description="A simple chatbot powered by vLLM",
    )


def main():
    # Parse the arguments
    args = parse_args()

    # Set OpenAI's API key and API base to use vLLM's API server
    openai_api_key = "EMPTY"
    openai_api_base = args.model_url

    # Create an OpenAI client
    client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)

    # Define the Gradio chatbot interface using the predict function
    gradio_interface = build_gradio_interface(
        client, args.model, args.temp, args.stop_token_ids
    )

    gradio_interface.queue().launch(
        server_name=args.host, server_port=args.port, share=True
    )


if __name__ == "__main__":
    main()