Gradio OpenAI 聊天机器人 Webserver
源文件 examples/online_serving/gradio_openai_chatbot_webserver.py。
# SPDX-License-Identifier: Apache-2.0
"""Example for starting a Gradio OpenAI Chatbot Webserver
Start vLLM API server:
vllm serve meta-llama/Llama-2-7b-chat-hf
Start Gradio OpenAI Chatbot Webserver:
python examples/online_serving/gradio_openai_chatbot_webserver.py \
-m meta-llama/Llama-2-7b-chat-hf
Note that `pip install --upgrade gradio` is needed to run this example.
More details: https://github.com/gradio-app/gradio
If your antivirus software blocks the download of frpc for gradio,
you can install it manually by following these steps:
1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.3/frpc_linux_amd64
2. Rename the downloaded file to: frpc_linux_amd64_v0.3
3. Move the file to this location: /home/user/.cache/huggingface/gradio/frpc
"""
import argparse
import gradio as gr
from openai import OpenAI
def format_history_to_openai(history):
history_openai_format = [
{"role": "system", "content": "You are a great AI assistant."}
]
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human})
history_openai_format.append({"role": "assistant", "content": assistant})
return history_openai_format
def predict(message, history, client, model_name, temp, stop_token_ids):
# Format history to OpenAI chat format
history_openai_format = format_history_to_openai(history)
history_openai_format.append({"role": "user", "content": message})
# Send request to OpenAI API (vLLM server)
stream = client.chat.completions.create(
model=model_name,
messages=history_openai_format,
temperature=temp,
stream=True,
extra_body={
"repetition_penalty": 1,
"stop_token_ids": [int(id.strip()) for id in stop_token_ids.split(",")]
if stop_token_ids
else [],
},
)
# Collect all chunks and concatenate them into a full message
full_message = ""
for chunk in stream:
full_message += chunk.choices[0].delta.content or ""
# Return the full message as a single response
return full_message
def parse_args():
parser = argparse.ArgumentParser(
description="Chatbot Interface with Customizable Parameters"
)
parser.add_argument(
"--model-url", type=str, default="http://localhost:8000/v1", help="Model URL"
)
parser.add_argument(
"-m", "--model", type=str, required=True, help="Model name for the chatbot"
)
parser.add_argument(
"--temp", type=float, default=0.8, help="Temperature for text generation"
)
parser.add_argument(
"--stop-token-ids", type=str, default="", help="Comma-separated stop token IDs"
)
parser.add_argument("--host", type=str, default=None)
parser.add_argument("--port", type=int, default=8001)
return parser.parse_args()
def build_gradio_interface(client, model_name, temp, stop_token_ids):
def chat_predict(message, history):
return predict(message, history, client, model_name, temp, stop_token_ids)
return gr.ChatInterface(
fn=chat_predict,
title="Chatbot Interface",
description="A simple chatbot powered by vLLM",
)
def main():
# Parse the arguments
args = parse_args()
# Set OpenAI's API key and API base to use vLLM's API server
openai_api_key = "EMPTY"
openai_api_base = args.model_url
# Create an OpenAI client
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
# Define the Gradio chatbot interface using the predict function
gradio_interface = build_gradio_interface(
client, args.model, args.temp, args.stop_token_ids
)
gradio_interface.queue().launch(
server_name=args.host, server_port=args.port, share=True
)
if __name__ == "__main__":
main()