带工具的 OpenAI 聊天补全客户端
来源 examples/online_serving/openai_chat_completion_client_with_tools.py。
# SPDX-License-Identifier: Apache-2.0
"""
Set up this example by starting a vLLM OpenAI-compatible server with tool call
options enabled. For example:
IMPORTANT: for mistral, you must use one of the provided mistral tool call
templates, or your own - the model default doesn't work for tool calls with vLLM
See the vLLM docs on OpenAI server & tool calling for more details.
vllm serve mistralai/Mistral-7B-Instruct-v0.3 \
--chat-template examples/tool_chat_template_mistral.jinja \
--enable-auto-tool-choice --tool-call-parser mistral
OR
vllm serve NousResearch/Hermes-2-Pro-Llama-3-8B \
--chat-template examples/tool_chat_template_hermes.jinja \
--enable-auto-tool-choice --tool-call-parser hermes
"""
import json
from typing import Any
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
properties = {
"city": {
"type": "string",
"description": "The city to find the weather for, e.g. 'San Francisco'",
},
"state": {
"type": "string",
"description": "the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'",
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"],
},
}
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": properties,
"required": ["city", "state", "unit"],
},
},
}
]
messages = [
{"role": "user", "content": "Hi! How are you doing today?"},
{"role": "assistant", "content": "I'm doing well! How can I help you?"},
{
"role": "user",
"content": (
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
),
},
]
def get_current_weather(city: str, state: str, unit: "str"):
return (
"The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's."
)
def handle_tool_calls_stream(
client: OpenAI,
messages: list[dict[str, str]],
model: str,
tools: list[dict[str, Any]],
) -> list[Any]:
tool_calls_stream = client.chat.completions.create(
messages=messages, model=model, tools=tools, stream=True
)
chunks = []
print("chunks: ")
for chunk in tool_calls_stream:
chunks.append(chunk)
if chunk.choices[0].delta.tool_calls:
print(chunk.choices[0].delta.tool_calls[0])
else:
print(chunk.choices[0].delta)
return chunks
def handle_tool_calls_arguments(chunks: list[Any]) -> list[str]:
arguments = []
tool_call_idx = -1
print("arguments: ")
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
if tool_call_idx >= 0:
print(f"streamed tool call arguments: {arguments[tool_call_idx]}")
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
if tool_call.id:
print(f"streamed tool call id: {tool_call.id} ")
if tool_call.function:
if tool_call.function.name:
print(f"streamed tool call name: {tool_call.function.name}")
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
return arguments
def main():
# Initialize OpenAI client
client = OpenAI(
# defaults to os.environ.get("OPENAI_API_KEY")
api_key=openai_api_key,
base_url=openai_api_base,
)
# Get available models and select one
models = client.models.list()
model = models.data[0].id
chat_completion = client.chat.completions.create(
messages=messages, model=model, tools=tools
)
print("-" * 70)
print("Chat completion results:")
print(chat_completion)
print("-" * 70)
# Stream tool calls
chunks = handle_tool_calls_stream(client, messages, model, tools)
print("-" * 70)
# Handle arguments from streamed tool calls
arguments = handle_tool_calls_arguments(chunks)
if len(arguments):
print(f"streamed tool call arguments: {arguments[-1]}\n")
print("-" * 70)
# Add tool call results to the conversation
messages.append(
{
"role": "assistant",
"tool_calls": chat_completion.choices[0].message.tool_calls,
}
)
# Now, simulate a tool call
available_tools = {"get_current_weather": get_current_weather}
completion_tool_calls = chat_completion.choices[0].message.tool_calls
for call in completion_tool_calls:
tool_to_call = available_tools[call.function.name]
args = json.loads(call.function.arguments)
result = tool_to_call(**args)
print("tool_to_call result: ", result)
messages.append(
{
"role": "tool",
"content": result,
"tool_call_id": call.id,
"name": call.function.name,
}
)
chat_completion_2 = client.chat.completions.create(
messages=messages, model=model, tools=tools, stream=False
)
print("Chat completion2 results:")
print(chat_completion_2)
print("-" * 70)
if __name__ == "__main__":
main()