AutoAWQ
要创建新的 4 位量化模型,您可以使用 AutoAWQ。量化将模型的精度从 BF16/FP16 降低到 INT4,显著减小了其内存占用,同时提高了延迟和内存利用率。
安装¶
您可以使用 AutoAWQ 量化自己的模型,也可以从 Hugging Face 上提供的超过 6,500 个预量化模型中进行选择。要安装模型,请使用以下命令
量化¶
安装模型后,您可以对其进行量化。有关详细说明,请参阅 AutoAWQ 文档。本示例展示了如何量化 mistralai/Mistral-7B-Instruct-v0.2。
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = 'mistralai/Mistral-7B-Instruct-v0.2'
quant_path = 'mistral-instruct-v0.2-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
# Load the model
model = AutoAWQForCausalLM.from_pretrained(
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save the quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')
使用 vLLM 运行量化模型¶
要使用 vLLM 运行量化的 AWQ 模型,请参考以下 TheBloke/Llama-2-7b-Chat-AWQ 的示例。
python examples/offline_inference/llm_engine_example.py \
--model TheBloke/Llama-2-7b-Chat-AWQ \
--quantization awq
在 vLLM 中使用模型¶
量化后的 AWQ 模型也可以直接通过 LLM 入口点支持
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="TheBloke/Llama-2-7b-Chat-AWQ", quantization="AWQ")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")