AutoAWQ#
要创建新的 4 位量化模型,您可以利用 AutoAWQ。量化将模型的精度从 FP16 降低到 INT4,这有效地将文件大小减少约 70%。主要优点是更低的延迟和内存使用。
您可以通过安装 AutoAWQ 或选择 Huggingface 上的 400 多个模型来量化您自己的模型。
pip install autoawq
安装 AutoAWQ 后,您就可以量化模型了。以下是如何量化 mistralai/Mistral-7B-Instruct-v0.2
的示例
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer
model_path = 'mistralai/Mistral-7B-Instruct-v0.2'
quant_path = 'mistral-instruct-v0.2-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }
# Load model
model = AutoAWQForCausalLM.from_pretrained(
model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
# Quantize
model.quantize(tokenizer, quant_config=quant_config)
# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
print(f'Model is quantized and saved at "{quant_path}"')
要使用 vLLM 运行 AWQ 模型,您可以使用 TheBloke/Llama-2-7b-Chat-AWQ 以及以下命令
python examples/offline_inference/llm_engine_example.py --model TheBloke/Llama-2-7b-Chat-AWQ --quantization awq
LLM 入口点也直接支持 AWQ 模型
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="TheBloke/Llama-2-7b-Chat-AWQ", quantization="AWQ")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")