LWS#
LeaderWorkerSet (LWS) 是一个 Kubernetes API,旨在解决 AI/ML 推理工作负载的常见部署模式。一个主要的用例是多主机/多节点分布式推理。
vLLM 可以通过 Kubernetes 上的 LWS 部署,用于分布式模型服务。
准备工作#
至少需要两个 Kubernetes 节点,每个节点配备 8 个 GPU。
按照此处找到的说明安装 LWS。
部署和提供服务#
部署以下 yaml 文件 lws.yaml
apiVersion: leaderworkerset.x-k8s.io/v1
kind: LeaderWorkerSet
metadata:
name: vllm
spec:
replicas: 2
leaderWorkerTemplate:
size: 2
restartPolicy: RecreateGroupOnPodRestart
leaderTemplate:
metadata:
labels:
role: leader
spec:
containers:
- name: vllm-leader
image: docker.io/vllm/vllm-openai:latest
env:
- name: HUGGING_FACE_HUB_TOKEN
value: <your-hf-token>
command:
- sh
- -c
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh leader --ray_cluster_size=$(LWS_GROUP_SIZE);
python3 -m vllm.entrypoints.openai.api_server --port 8080 --model meta-llama/Meta-Llama-3.1-405B-Instruct --tensor-parallel-size 8 --pipeline_parallel_size 2"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
ports:
- containerPort: 8080
readinessProbe:
tcpSocket:
port: 8080
initialDelaySeconds: 15
periodSeconds: 10
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
workerTemplate:
spec:
containers:
- name: vllm-worker
image: docker.io/vllm/vllm-openai:latest
command:
- sh
- -c
- "bash /vllm-workspace/examples/online_serving/multi-node-serving.sh worker --ray_address=$(LWS_LEADER_ADDRESS)"
resources:
limits:
nvidia.com/gpu: "8"
memory: 1124Gi
ephemeral-storage: 800Gi
requests:
ephemeral-storage: 800Gi
cpu: 125
env:
- name: HUGGING_FACE_HUB_TOKEN
value: <your-hf-token>
volumeMounts:
- mountPath: /dev/shm
name: dshm
volumes:
- name: dshm
emptyDir:
medium: Memory
sizeLimit: 15Gi
---
apiVersion: v1
kind: Service
metadata:
name: vllm-leader
spec:
ports:
- name: http
port: 8080
protocol: TCP
targetPort: 8080
selector:
leaderworkerset.sigs.k8s.io/name: vllm
role: leader
type: ClusterIP
kubectl apply -f lws.yaml
验证 Pod 的状态
kubectl get pods
应该得到类似于这样的输出
NAME READY STATUS RESTARTS AGE
vllm-0 1/1 Running 0 2s
vllm-0-1 1/1 Running 0 2s
vllm-1 1/1 Running 0 2s
vllm-1-1 1/1 Running 0 2s
验证分布式张量并行推理是否工作
kubectl logs vllm-0 |grep -i "Loading model weights took"
应该得到类似于这样的结果
INFO 05-08 03:20:24 model_runner.py:173] Loading model weights took 0.1189 GB
(RayWorkerWrapper pid=169, ip=10.20.0.197) INFO 05-08 03:20:28 model_runner.py:173] Loading model weights took 0.1189 GB
访问 ClusterIP 服务#
# Listen on port 8080 locally, forwarding to the targetPort of the service's port 8080 in a pod selected by the service
kubectl port-forward svc/vllm-leader 8080:8080
输出应该类似于以下内容
Forwarding from 127.0.0.1:8080 -> 8080
Forwarding from [::1]:8080 -> 8080
提供模型服务#
打开另一个终端并发送请求
curl https://127.0.0.1:8080/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
输出应该类似于以下内容
{
"id": "cmpl-1bb34faba88b43f9862cfbfb2200949d",
"object": "text_completion",
"created": 1715138766,
"model": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"choices": [
{
"index": 0,
"text": " top destination for foodies, with",
"logprobs": null,
"finish_reason": "length",
"stop_reason": null
}
],
"usage": {
"prompt_tokens": 5,
"total_tokens": 12,
"completion_tokens": 7
}
}