来源 examples/offline_inference/disaggregated-prefill-v1。
拆分预填充 V1¶
此示例包含脚本,演示了 vLLM 在离线设置中的拆分预填充功能。
文件¶
run.sh
- 一个辅助脚本,将按顺序运行prefill_example.py
和decode_example.py
。- 确保您位于
examples/offline_inference/disaggregated-prefill-v1
目录中,然后再运行run.sh
。 prefill_example.py
- 一个仅执行预填充的脚本,将 KV 状态保存到local_storage
目录,并将 prompts 保存到output.txt
。decode_example.py
- 一个仅执行解码的脚本,从local_storage
目录加载 KV 状态,并从output.txt
加载 prompts。
示例材料¶
decode_example.py
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
def read_prompts():
"""Read prompts from output.txt"""
prompts = []
try:
with open("output.txt") as f:
for line in f:
prompts.append(line.strip())
print(f"Loaded {len(prompts)} prompts from output.txt")
return prompts
except FileNotFoundError:
print("Error: output.txt file not found")
exit(-1)
def main():
prompts = read_prompts()
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=10)
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
gpu_memory_utilization=0.8,
max_num_batched_tokens=64,
max_num_seqs=16,
kv_transfer_config=KVTransferConfig(
kv_connector="SharedStorageConnector",
kv_role="kv_both",
kv_connector_extra_config={"shared_storage_path": "local_storage"},
),
) # , max_model_len=2048, max_num_batched_tokens=2048)
# 1ST generation (prefill instance)
outputs = llm.generate(prompts, sampling_params)
print("-" * 30)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 30)
if __name__ == "__main__":
main()
prefill_example.py
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
def read_prompts():
context = "Hi " * 1000
context2 = "Hey " * 500
return [
context + "Hello, my name is",
context + "The capital of France is",
context2 + "Your name is",
context2 + "The capital of China is",
]
def main():
prompts = read_prompts()
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
enforce_eager=True,
gpu_memory_utilization=0.8,
kv_transfer_config=KVTransferConfig(
kv_connector="SharedStorageConnector",
kv_role="kv_both",
kv_connector_extra_config={"shared_storage_path": "local_storage"},
),
) # , max_model_len=2048, max_num_batched_tokens=2048)
# 1ST generation (prefill instance)
outputs = llm.generate(
prompts,
sampling_params,
)
new_prompts = []
print("-" * 30)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
new_prompts.append(prompt + generated_text)
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 30)
# Write new_prompts to output.txt
with open("output.txt", "w") as f:
for prompt in new_prompts:
f.write(prompt + "\n")
print(f"Saved {len(new_prompts)} prompts to output.txt")
if __name__ == "__main__":
main()