提示词嵌入推理
来源 examples/offline_inference/prompt_embed_inference.py。
# SPDX-License-Identifier: Apache-2.0
"""
Demonstrates how to generate prompt embeddings using
Hugging Face Transformers and use them as input to vLLM
for both single and batch inference.
Model: meta-llama/Llama-3.2-1B-Instruct
Note: This model is gated on Hugging Face Hub.
You must request access to use it:
https://hugging-face.cn/meta-llama/Llama-3.2-1B-Instruct
Requirements:
- vLLM
- transformers
Run:
python examples/offline_inference/prompt_embed_inference.py
"""
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizer
from vllm import LLM
def init_tokenizer_and_llm(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name)
transformers_model = AutoModelForCausalLM.from_pretrained(model_name)
embedding_layer = transformers_model.get_input_embeddings()
llm = LLM(model=model_name, enable_prompt_embeds=True)
return tokenizer, embedding_layer, llm
def get_prompt_embeds(
chat: list[dict[str, str]],
tokenizer: PreTrainedTokenizer,
embedding_layer: torch.nn.Module,
):
token_ids = tokenizer.apply_chat_template(
chat, add_generation_prompt=True, return_tensors="pt"
)
prompt_embeds = embedding_layer(token_ids).squeeze(0)
return prompt_embeds
def single_prompt_inference(
llm: LLM, tokenizer: PreTrainedTokenizer, embedding_layer: torch.nn.Module
):
chat = [{"role": "user", "content": "Please tell me about the capital of France."}]
prompt_embeds = get_prompt_embeds(chat, tokenizer, embedding_layer)
outputs = llm.generate(
{
"prompt_embeds": prompt_embeds,
}
)
print("\n[Single Inference Output]")
print("-" * 30)
for o in outputs:
print(o.outputs[0].text)
print("-" * 30)
def batch_prompt_inference(
llm: LLM, tokenizer: PreTrainedTokenizer, embedding_layer: torch.nn.Module
):
chats = [
[{"role": "user", "content": "Please tell me about the capital of France."}],
[{"role": "user", "content": "When is the day longest during the year?"}],
[{"role": "user", "content": "Where is bigger, the moon or the sun?"}],
]
prompt_embeds_list = [
get_prompt_embeds(chat, tokenizer, embedding_layer) for chat in chats
]
outputs = llm.generate([{"prompt_embeds": embeds} for embeds in prompt_embeds_list])
print("\n[Batch Inference Outputs]")
print("-" * 30)
for i, o in enumerate(outputs):
print(f"Q{i + 1}: {chats[i][0]['content']}")
print(f"A{i + 1}: {o.outputs[0].text}\n")
print("-" * 30)
def main():
model_name = "meta-llama/Llama-3.2-1B-Instruct"
tokenizer, embedding_layer, llm = init_tokenizer_and_llm(model_name)
single_prompt_inference(llm, tokenizer, embedding_layer)
batch_prompt_inference(llm, tokenizer, embedding_layer)
if __name__ == "__main__":
main()