指标
源文件 examples/offline_inference/metrics.py.
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
from vllm.v1.metrics.reader import Counter, Gauge, Histogram, Vector
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(model="facebook/opt-125m", disable_log_stats=False)
# Generate texts from the prompts.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
# Dump all metrics
for metric in llm.get_metrics():
if isinstance(metric, Gauge):
print(f"{metric.name} (gauge) = {metric.value}")
elif isinstance(metric, Counter):
print(f"{metric.name} (counter) = {metric.value}")
elif isinstance(metric, Vector):
print(f"{metric.name} (vector) = {metric.values}")
elif isinstance(metric, Histogram):
print(f"{metric.name} (histogram)")
print(f" sum = {metric.sum}")
print(f" count = {metric.count}")
for bucket_le, value in metric.buckets.items():
print(f" {bucket_le} = {value}")
if __name__ == "__main__":
main()