可复现性
来源 examples/offline_inference/reproducibility.py.
# SPDX-License-Identifier: Apache-2.0
"""
Demonstrates how to achieve reproducibility in vLLM.
Main article: https://docs.vllm.com.cn/en/latest/usage/reproducibility.html
"""
import os
import random
from vllm import LLM, SamplingParams
# V1 only: Turn off multiprocessing to make the scheduling deterministic.
os.environ["VLLM_ENABLE_V1_MULTIPROCESSING"] = "0"
# V0 only: Set the global seed. The default seed is None, which is
# not reproducible.
SEED = 42
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
llm = LLM(model="facebook/opt-125m", seed=SEED)
outputs = llm.generate(prompts, sampling_params)
print("-" * 50)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}\nGenerated text: {generated_text!r}")
print("-" * 50)
# Try generating random numbers outside vLLM
# The same number is output across runs, meaning that the random state
# in the user code has been updated by vLLM
print(random.randint(0, 100))
if __name__ == "__main__":
main()