DeepSeek-V3/3.1#
简介#
DeepSeek-V3.1是一款混合模型,支持思维模式和非思维模式。与前一版本相比,此次升级在多个方面带来了改进。
混合思维模式:通过更改chat template,一个模型支持思维模式和非思维模式。
更智能的工具调用:通过后期训练优化,模型在工具使用和Agent任务方面的性能得到了显著提升。
更高的思考效率:DeepSeek-V3.1-Think在回答质量上媲美DeepSeek-R1-0528,同时响应速度更快。
模型首次在DeepSeek-V3.1中得到支持。vllm-ascend:v0.9.1rc3
本文档将展示模型的主要验证步骤,包括支持的特性、特性配置、环境准备、单节点和多节点部署、准确性和性能评估。
支持的特性#
请参阅 支持的特性 获取模型的特性支持矩阵。
请参阅 特性指南 获取特性的配置方法。
环境准备#
模型权重#
(BF16版本):下载模型权重DeepSeek-V3.1(无mtp量化版本):下载模型权重。DeepSeek-V3.1-w8a8(带mix mtp量化版本):下载模型权重。请在DeepSeek-V3.1_w8a8mix_mtp中将config.json从torch_dtype修改为float16。bfloat16:msmodelslim。您可以使用这些方法对模型进行量化。量化 方法
建议将模型权重下载到多节点的共享目录中,例如 /root/.cache/
验证多节点通信(可选)#
如果您想部署多节点环境,需要按照验证多节点通信环境来验证多节点通信。
安装#
您可以使用我们的官方docker镜像直接运行。DeepSeek-V3.1
根据您的机器类型选择镜像,并在您的节点上启动docker镜像,请参考使用docker进行设置。
# Update --device according to your device (Atlas A2: /dev/davinci[0-7] Atlas A3:/dev/davinci[0-15]).
# Update the vllm-ascend image according to your environment.
# Note you should download the weight to /root/.cache in advance.
# Update the vllm-ascend image
export IMAGE=m.daocloud.io/quay.io/ascend/vllm-ascend:v0.12.0rc1
export NAME=vllm-ascend
# Run the container using the defined variables
# Note: If you are running bridge network with docker, please expose available ports for multiple nodes communication in advance
docker run --rm \
--name $NAME \
--net=host \
--shm-size=1g \
--device /dev/davinci0 \
--device /dev/davinci1 \
--device /dev/davinci2 \
--device /dev/davinci3 \
--device /dev/davinci4 \
--device /dev/davinci5 \
--device /dev/davinci6 \
--device /dev/davinci7 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/Ascend/driver/tools/hccn_tool:/usr/local/Ascend/driver/tools/hccn_tool \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-it $IMAGE bash
如果您想部署多节点环境,需要在每个节点上设置环境。
部署#
单节点部署#
量化模型
可以部署在1个Atlas 800 A3 (64G × 16)上。DeepSeek-V3.1_w8a8mix_mtp
运行以下脚本执行在线推理。
#!/bin/sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxxx"
local_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
# AIV
export HCCL_OP_EXPANSION_MODE="AIV"
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export VLLM_ASCEND_ENABLE_MLAPO=1
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port 8015 \
--data-parallel-size 4 \
--tensor-parallel-size 4 \
--quantization ascend \
--seed 1024 \
--served-model-name deepseek_v3 \
--enable-expert-parallel \
--max-num-seqs 16 \
--max-model-len 16384 \
--max-num-batched-tokens 4096 \
--trust-remote-code \
--no-enable-prefix-caching \
--gpu-memory-utilization 0.92 \
--speculative-config '{"num_speculative_tokens": 1, "method": "mtp"}' \
--compilation-config '{"cudagraph_mode": "FULL_DECODE_ONLY"}' \
注意:参数解释如下。
设置环境变量
可以启用一个可以显著提升性能的融合算子,但它需要更多的NPU内存。因此,建议在NPU内存充足的情况下启用此选项。VLLM_ASCEND_ENABLE_MLAPO=1对于单节点部署,我们建议使用
而不是dp4tp4。dp2tp8指定最大上下文长度,即单个请求的输入和输出token的总和。对于输入长度为3.5K,输出长度为1.5K的性能测试,设置为--max-model-len已经足够,但对于精度测试,请至少设置为16384。35000--no-enable-prefix-caching表示禁用了前缀缓存。要启用它,请删除此选项。
多节点部署#
:至少需要2个Atlas 800 A2 (64G × 8)。DeepSeek-V3.1_w8a8mix_mtp
分别在两个节点上运行以下脚本。
节点 0
#!/bin/sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxxx"
local_ip="xxxx"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
# AIV
export HCCL_OP_EXPANSION_MODE="AIV"
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export VLLM_USE_V1=1
export HCCL_BUFFSIZE=200
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_INTRA_PCIE_ENABLE=1
export HCCL_INTRA_ROCE_ENABLE=0
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port 8004 \
--data-parallel-size 4 \
--data-parallel-size-local 2 \
--data-parallel-address $node0_ip \
--data-parallel-rpc-port 13389 \
--tensor-parallel-size 4 \
--quantization ascend \
--seed 1024 \
--served-model-name deepseek_v3 \
--enable-expert-parallel \
--max-num-seqs 20 \
--max-model-len 16384 \
--max-num-batched-tokens 4096 \
--trust-remote-code \
--no-enable-prefix-caching \
--gpu-memory-utilization 0.94 \
--speculative-config '{"num_speculative_tokens": 1, "method": "mtp"}' \
--compilation-config '{"cudagraph_mode": "FULL_DECODE_ONLY"}' \
节点 1
#!/bin/sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxx"
local_ip="xxx"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
# AIV
export HCCL_OP_EXPANSION_MODE="AIV"
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export HCCL_BUFFSIZE=200
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_INTRA_PCIE_ENABLE=1
export HCCL_INTRA_ROCE_ENABLE=0
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port 8004 \
--headless \
--data-parallel-size 4 \
--data-parallel-size-local 2 \
--data-parallel-start-rank 2 \
--data-parallel-address $node0_ip \
--data-parallel-rpc-port 13389 \
--tensor-parallel-size 4 \
--quantization ascend \
--seed 1024 \
--served-model-name deepseek_v3 \
--enable-expert-parallel \
--max-num-seqs 20 \
--max-model-len 16384 \
--max-num-batched-tokens 4096 \
--trust-remote-code \
--no-enable-prefix-caching \
--gpu-memory-utilization 0.94 \
--speculative-config '{"num_speculative_tokens": 1, "method": "mtp"}' \
--compilation-config '{"cudagraph_mode": "FULL_DECODE_ONLY"}' \
Prefill-Decode 分离#
我们推荐使用Mooncake进行部署:Mooncake。
以Atlas 800 A3 (64G × 16)为例,我们建议部署2P1D(4个节点)而不是1P1D(2个节点),因为1P1D情况下NPU内存不足以服务高并发。
需要4个Atlas 800 A3 (64G × 16)。DeepSeek-V3.1_w8a8mix_mtp 2P1D Layerwise
要运行vllm-ascend服务,您需要在每个节点上部署Prefill-Decode Disaggregation脚本和launch_dp_program.py脚本,并在预填充主节点上部署run_dp_template.sh脚本来转发请求。proxy.sh
每个节点的
脚本launch_dp_program.py
import argparse
import multiprocessing
import os
import subprocess
import sys
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--dp-size",
type=int,
required=True,
help="Data parallel size."
)
parser.add_argument(
"--tp-size",
type=int,
default=1,
help="Tensor parallel size."
)
parser.add_argument(
"--dp-size-local",
type=int,
default=-1,
help="Local data parallel size."
)
parser.add_argument(
"--dp-rank-start",
type=int,
default=0,
help="Starting rank for data parallel."
)
parser.add_argument(
"--dp-address",
type=str,
required=True,
help="IP address for data parallel master node."
)
parser.add_argument(
"--dp-rpc-port",
type=str,
default=12345,
help="Port for data parallel master node."
)
parser.add_argument(
"--vllm-start-port",
type=int,
default=9000,
help="Starting port for the engine."
)
return parser.parse_args()
args = parse_args()
dp_size = args.dp_size
tp_size = args.tp_size
dp_size_local = args.dp_size_local
if dp_size_local == -1:
dp_size_local = dp_size
dp_rank_start = args.dp_rank_start
dp_address = args.dp_address
dp_rpc_port = args.dp_rpc_port
vllm_start_port = args.vllm_start_port
def run_command(visible_devices, dp_rank, vllm_engine_port):
command = [
"bash",
"./run_dp_template.sh",
visible_devices,
str(vllm_engine_port),
str(dp_size),
str(dp_rank),
dp_address,
dp_rpc_port,
str(tp_size),
]
subprocess.run(command, check=True)
if __name__ == "__main__":
template_path = "./run_dp_template.sh"
if not os.path.exists(template_path):
print(f"Template file {template_path} does not exist.")
sys.exit(1)
processes = []
num_cards = dp_size_local * tp_size
for i in range(dp_size_local):
dp_rank = dp_rank_start + i
vllm_engine_port = vllm_start_port + i
visible_devices = ",".join(str(x) for x in range(i * tp_size, (i + 1) * tp_size))
process = multiprocessing.Process(target=run_command,
args=(visible_devices, dp_rank,
vllm_engine_port))
processes.append(process)
process.start()
for process in processes:
process.join()
预填充节点0的
脚本run_dp_template.sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxx"
local_ip="141.xx.xx.1"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export VLLM_VERSION="0.11.0"
export VLLM_RPC_TIMEOUT=3600000
export VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS=30000
export HCCL_EXEC_TIMEOUT=204
export HCCL_CONNECT_TIMEOUT=120
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_BUFFSIZE=256
export TASK_QUEUE_ENABLE=1
export HCCL_OP_EXPANSION_MODE="AIV"
export VLLM_USE_V1=1
export ASCEND_RT_VISIBLE_DEVICE=$1
export ASCEND_BUFFER_POOL=4:8
export LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages/mooncake:$LD_LIBRARY_PATH
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port $2 \
--data-parallel-size $3 \
--data-parallel-rank $4 \
--data-parallel-address $5 \
--data-parallel-rpc-port $6 \
--tensor-parallel-size $7 \
--enable-expert-parallel \
--seed 1024 \
--served-model-name deepseek_v3 \
--max-model-len 40000 \
--max-num-batched-tokens 16384 \
--max-num-seqs 8 \
--enforce-eager \
--trust-remote-code \
--gpu-memory-utilization 0.9 \
--quantization ascend \
--no-enable-prefix-caching \
--speculative-config '{"num_speculative_tokens": 1, "method": "mtp"}' \
--additional-config '{"recompute_scheduler_enable":true,"enable_shared_expert_dp": true}' \
--kv-transfer-config \
'{"kv_connector": "MooncakeConnectorV1",
"kv_role": "kv_producer",
"kv_port": "30000",
"engine_id": "0",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 32,
"tp_size": 1
}
}
}'
预填充节点1的
脚本run_dp_template.sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxx"
local_ip="141.xx.xx.2"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export VLLM_VERSION="0.11.0"
export VLLM_RPC_TIMEOUT=3600000
export VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS=30000
export HCCL_EXEC_TIMEOUT=204
export HCCL_CONNECT_TIMEOUT=120
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_BUFFSIZE=256
export TASK_QUEUE_ENABLE=1
export HCCL_OP_EXPANSION_MODE="AIV"
export VLLM_USE_V1=1
export ASCEND_RT_VISIBLE_DEVICE=$1
export ASCEND_BUFFER_POOL=4:8
export LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages/mooncake:$LD_LIBRARY_PATH
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port $2 \
--data-parallel-size $3 \
--data-parallel-rank $4 \
--data-parallel-address $5 \
--data-parallel-rpc-port $6 \
--tensor-parallel-size $7 \
--enable-expert-parallel \
--seed 1024 \
--served-model-name deepseek_v3 \
--max-model-len 40000 \
--max-num-batched-tokens 16384 \
--max-num-seqs 8 \
--enforce-eager \
--trust-remote-code \
--gpu-memory-utilization 0.9 \
--quantization ascend \
--no-enable-prefix-caching \
--speculative-config '{"num_speculative_tokens": 1, "method": "deepseek_mtp"}' \
--additional-config '{"recompute_scheduler_enable":true,"enable_shared_expert_dp": true}' \
--kv-transfer-config \
'{"kv_connector": "MooncakeConnectorV1",
"kv_role": "kv_producer",
"kv_port": "30100",
"engine_id": "1",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 32,
"tp_size": 1
}
}
}'
解码节点0的
脚本run_dp_template.sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxx"
local_ip="141.xx.xx.3"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export VLLM_VERSION="0.11.0"
export VLLM_RPC_TIMEOUT=3600000
export VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS=30000
export HCCL_EXEC_TIMEOUT=204
export HCCL_CONNECT_TIMEOUT=120
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_BUFFSIZE=600
export TASK_QUEUE_ENABLE=1
export HCCL_OP_EXPANSION_MODE="AIV"
export VLLM_USE_V1=1
export ASCEND_RT_VISIBLE_DEVICE=$1
export ASCEND_BUFFER_POOL=4:8
export LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages/mooncake:$LD_LIBRARY_PATH
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port $2 \
--data-parallel-size $3 \
--data-parallel-rank $4 \
--data-parallel-address $5 \
--data-parallel-rpc-port $6 \
--tensor-parallel-size $7 \
--enable-expert-parallel \
--seed 1024 \
--served-model-name deepseek_v3 \
--max-model-len 40000 \
--max-num-batched-tokens 256 \
--max-num-seqs 40 \
--trust-remote-code \
--gpu-memory-utilization 0.94 \
--quantization ascend \
--no-enable-prefix-caching \
--speculative-config '{"num_speculative_tokens": 1, "method": "deepseek_mtp"}' \
--compilation-config '{"cudagraph_mode": "FULL_DECODE_ONLY"}' \
--additional-config '{"recompute_scheduler_enable":true,"multistream_overlap_shared_expert": true,"lm_head_tensor_parallel_size":16}' \
--kv-transfer-config \
'{"kv_connector": "MooncakeConnectorV1",
"kv_role": "kv_consumer",
"kv_port": "30200",
"engine_id": "2",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 32,
"tp_size": 1
}
}
}'
解码节点1的
脚本run_dp_template.sh
# this obtained through ifconfig
# nic_name is the network interface name corresponding to local_ip of the current node
nic_name="xxx"
local_ip="141.xx.xx.4"
# The value of node0_ip must be consistent with the value of local_ip set in node0 (master node)
node0_ip="xxxx"
# [Optional] jemalloc
# jemalloc is for better performance, if `libjemalloc.so` is install on your machine, you can turn it on.
# export LD_PRELOAD=/usr/lib/aarch64-linux-gnu/libjemalloc.so.2:$LD_PRELOAD
export HCCL_IF_IP=$local_ip
export GLOO_SOCKET_IFNAME=$nic_name
export TP_SOCKET_IFNAME=$nic_name
export HCCL_SOCKET_IFNAME=$nic_name
export VLLM_VERSION="0.11.0"
export VLLM_RPC_TIMEOUT=3600000
export VLLM_EXECUTE_MODEL_TIMEOUT_SECONDS=30000
export HCCL_EXEC_TIMEOUT=204
export HCCL_CONNECT_TIMEOUT=120
export OMP_PROC_BIND=false
export OMP_NUM_THREADS=10
export PYTORCH_NPU_ALLOC_CONF=expandable_segments:True
export VLLM_ASCEND_ENABLE_MLAPO=1
export HCCL_BUFFSIZE=600
export TASK_QUEUE_ENABLE=1
export HCCL_OP_EXPANSION_MODE="AIV"
export VLLM_USE_V1=1
export ASCEND_RT_VISIBLE_DEVICE=$1
export ASCEND_BUFFER_POOL=4:8
export LD_LIBRARY_PATH=/usr/local/Ascend/ascend-toolkit/latest/python/site-packages/mooncake:$LD_LIBRARY_PATH
vllm serve /weights/DeepSeek-V3.1_w8a8mix_mtp \
--host 0.0.0.0 \
--port $2 \
--data-parallel-size $3 \
--data-parallel-rank $4 \
--data-parallel-address $5 \
--data-parallel-rpc-port $6 \
--tensor-parallel-size $7 \
--enable-expert-parallel \
--seed 1024 \
--served-model-name deepseek_v3 \
--max-model-len 40000 \
--max-num-batched-tokens 256 \
--max-num-seqs 40 \
--trust-remote-code \
--gpu-memory-utilization 0.94 \
--quantization ascend \
--no-enable-prefix-caching \
--speculative-config '{"num_speculative_tokens": 1, "method": "deepseek_mtp"}' \
--compilation-config '{"cudagraph_mode": "FULL_DECODE_ONLY"}' \
--additional-config '{"recompute_scheduler_enable":true,"multistream_overlap_shared_expert": true,"lm_head_tensor_parallel_size":16}' \
--kv-transfer-config \
'{"kv_connector": "MooncakeConnectorV1",
"kv_role": "kv_consumer",
"kv_port": "30300",
"engine_id": "3",
"kv_connector_module_path": "vllm_ascend.distributed.mooncake_connector",
"kv_connector_extra_config": {
"prefill": {
"dp_size": 2,
"tp_size": 8
},
"decode": {
"dp_size": 32,
"tp_size": 1
}
}
}'
为每个节点运行服务器
# p0
python launch_dp_program.py --dp-size 2 --tp-size 8 --dp-size-local 2 --dp-rank-start 0 --dp-address 141.xx.xx.1 --dp-rpc-port 12321 --vllm-start-port 7100
# p1
python launch_dp_program.py --dp-size 2 --tp-size 8 --dp-size-local 2 --dp-rank-start 0 --dp-address 141.xx.xx.2 --dp-rpc-port 12321 --vllm-start-port 7100
# d0
python launch_dp_program.py --dp-size 32 --tp-size 1 --dp-size-local 16 --dp-rank-start 0 --dp-address 141.xx.xx.3 --dp-rpc-port 12321 --vllm-start-port 7100
# d1
python launch_dp_program.py --dp-size 32 --tp-size 1 --dp-size-local 16 --dp-rank-start 16 --dp-address 141.xx.xx.3 --dp-rpc-port 12321 --vllm-start-port 7100
预填充主节点的
脚本proxy.sh
python load_balance_proxy_server_example.py \
--port 1999 \
--host 141.xx.xx.1 \
--prefiller-hosts \
141.xx.xx.1 \
141.xx.xx.1 \
141.xx.xx.2 \
141.xx.xx.2 \
--prefiller-ports \
7100 7101 7100 7101 \
--decoder-hosts \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.3 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
141.xx.xx.4 \
--decoder-ports \
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 \
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 \
运行代理
在与预填充服务实例相同的节点上运行代理服务器。您可以在仓库的examples中找到代理程序:load_balance_proxy_layerwise_server_example.py 或 load_balance_proxy_server_example.py。
cd vllm-ascend/examples/disaggregated_prefill_v1/
bash proxy.sh
功能验证#
服务器启动后,您可以用输入提示查询模型
curl http://<node0_ip>:<port>/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "deepseek_v3",
"prompt": "The future of AI is",
"max_tokens": 50,
"temperature": 0
}'
精度评估#
这里有两种准确率评估方法。
使用 AISBench#
详情请参阅使用 AISBench。
执行后,您将获得结果。以下是
中vllm-ascend:0.11.0rc1的结果,仅供参考。DeepSeek-V3.1_w8a8mix_mtp
数据集 |
version |
指标 |
模式 |
vllm-api-general-chat |
备注 |
|---|---|---|---|---|---|
ceval |
- |
accuracy |
gen |
90.94 |
1个Atlas 800 A3 (64G × 16) |
gsm8k |
- |
accuracy |
gen |
96.28 |
1个Atlas 800 A3 (64G × 16) |
使用语言模型评估框架#
尚未测试。
性能#
使用 AISBench#
详情请参阅使用 AISBench 进行性能评估。
使用 vLLM Benchmark#
以的性能评估为例。DeepSeek-V3.1_w8a8mix_mtp
更多详情请参阅 vllm benchmark。
有三个 vllm bench 子命令
latency:对单批请求的延迟进行基准测试。serve:对在线服务吞吐量进行基准测试。throughput:对离线推理吞吐量进行基准测试。
以 serve 为例。运行代码如下。
vllm bench serve --model vllm-ascend/DeepSeek-V3.1_w8a8mix_mtp --dataset-name random --random-input 1024 --num-prompt 200 --request-rate 1 --save-result --result-dir ./
大约几分钟后,您就可以得到性能评估结果。