Qwen3-8B-W4A8#
运行 Docker 容器#
注意
w4a8 量化功能在 v0.9.1rc2 及以上版本中支持。
# Update the vllm-ascend image
export IMAGE=m.daocloud.io/quay.io/ascend/vllm-ascend:v0.12.0rc1
docker run --rm \
--name vllm-ascend \
--shm-size=1g \
--device /dev/davinci0 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/.cache:/root/.cache \
-p 8000:8000 \
-it $IMAGE bash
安装 modelslim 并转换模型#
注意
您可以选择自行转换模型,也可以使用我们上传的量化模型,请参阅 https://www.modelscope.cn/models/vllm-ascend/Qwen3-8B-W4A8
# The branch(br_release_MindStudio_8.1.RC2_TR5_20260624) has been verified
git clone -b br_release_MindStudio_8.1.RC2_TR5_20260624 https://gitcode.com/Ascend/msit
cd msit/msmodelslim
# Install by run this script
bash install.sh
pip install accelerate
cd example/Qwen
# Original weight path, Replace with your local model path
MODEL_PATH=/home/models/Qwen3-8B
# Path to save converted weight, Replace with your local path
SAVE_PATH=/home/models/Qwen3-8B-w4a8
# Set an idle NPU card
export ASCEND_RT_VISIBLE_DEVICES=0
python quant_qwen.py \
--model_path $MODEL_PATH \
--save_directory $SAVE_PATH \
--device_type npu \
--model_type qwen3 \
--calib_file None \
--anti_method m6 \
--anti_calib_file ./calib_data/mix_dataset.json \
--w_bit 4 \
--a_bit 8 \
--is_lowbit True \
--open_outlier False \
--group_size 256 \
--is_dynamic True \
--trust_remote_code True \
--w_method HQQ
验证量化模型#
转换后的模型文件如下所示
.
|-- config.json
|-- configuration.json
|-- generation_config.json
|-- merges.txt
|-- quant_model_description.json
|-- quant_model_weight_w4a8_dynamic-00001-of-00003.safetensors
|-- quant_model_weight_w4a8_dynamic-00002-of-00003.safetensors
|-- quant_model_weight_w4a8_dynamic-00003-of-00003.safetensors
|-- quant_model_weight_w4a8_dynamic.safetensors.index.json
|-- README.md
|-- tokenizer.json
`-- tokenizer_config.json
运行以下脚本以使用量化模型启动 vLLM 服务器
export VLLM_USE_MODELSCOPE=true
export MODEL_PATH=vllm-ascend/Qwen3-8B-W4A8
vllm serve ${MODEL_PATH} --served-model-name "qwen3-8b-w4a8" --max-model-len 4096 --quantization ascend
服务器启动后,您可以使用输入提示查询模型。
curl https://:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "qwen3-8b-w4a8",
"prompt": "what is large language model?",
"max_tokens": "128",
"top_p": "0.95",
"top_k": "40",
"temperature": "0.0"
}'
运行以下脚本以使用量化模型在单NPU上执行离线推理
注意
要为 ascend 启用量化,量化方法(quantization method)必须为“ascend”。
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=40)
llm = LLM(model="/home/models/Qwen3-8B-w4a8",
max_model_len=4096,
quantization="ascend")
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")