多模态支持
本文档将引导您完成扩展基本模型以使其接受 多模态输入 的步骤。
1. 更新基础vLLM模型¶
假设您已经按照 这些步骤 在vLLM中实现了模型。请按如下方式进一步更新模型:
- 在 forward 方法中为每个对应于多模态输入的输入张量保留一个关键字参数,如下例所示:
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
+ pixel_values: torch.Tensor,
) -> SamplerOutput:
更方便的是,您可以简单地将 **kwargs
传递给 forward 方法,并从中检索多模态输入的关键字参数。
-
实现 get_multimodal_embeddings 方法,该方法返回通过模型的多模态tokenizer运行多模态输入后获得的embeddings。下面提供了一个典型实现模式的样板,但您可以根据自己的需要进行调整。
class YourModelForImage2Seq(nn.Module): ... def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor: assert self.vision_encoder is not None image_features = self.vision_encoder(image_input) return self.multi_modal_projector(image_features) def get_multimodal_embeddings( self, **kwargs: object) -> Optional[MultiModalEmbeddings]: # Validate the multimodal input keyword arguments image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return None # Run multimodal inputs through encoder and projector vision_embeddings = self._process_image_input(image_input) return vision_embeddings
警告
The returned `multimodal_embeddings` must be either a **3D [torch.Tensor][]** of shape `(num_items, feature_size, hidden_size)`, or a **list / tuple of 2D [torch.Tensor][]'s** of shape `(feature_size, hidden_size)`, so that `multimodal_embeddings[i]` retrieves the embeddings generated from the `i`-th multimodal data item (e.g, image) of the request.
-
实现 [get_input_embeddings][vllm.model_executor.models.interfaces.SupportsMultiModal.get_input_embeddings] 方法,将
multimodal_embeddings
与来自input_ids
的文本embeddings合并。如果模型的输入处理已正确实现(参见以下部分),则您可以利用我们提供的实用函数轻松合并embeddings。from .utils import merge_multimodal_embeddings class YourModelForImage2Seq(nn.Module): ... def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, ) -> torch.Tensor: # `get_input_embeddings` should already be implemented for the language # model as one of the requirements of basic vLLM model implementation. inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( input_ids=input_ids, inputs_embeds=inputs_embeds, multimodal_embeddings=multimodal_embeddings, placeholder_token_id=self.config.image_token_index) return inputs_embeds
-
实现 get_language_model getter方法,以稳定访问底层语言模型。
-
完成上述步骤后,使用 SupportsMultiModal 接口更新模型类。
+ from vllm.model_executor.models.interfaces import SupportsMultiModal
- class YourModelForImage2Seq(nn.Module):
+ class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
注意
模型类不必命名为 *ForCausalLM
。请查看 HuggingFace Transformers文档 获取一些示例。
2. 指定处理信息¶
接下来,创建一个 BaseProcessingInfo 的子类,以提供与HF处理相关的基本信息。
最大输入项数¶
您需要覆盖抽象方法 get_supported_mm_limits,以返回模型支持的每种模态的最大输入项数。
例如,如果模型支持任意数量的图片,但每个prompt只支持一个视频
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None, "video": 1}
3. 指定虚拟输入¶
然后,继承 BaseDummyInputsBuilder,以构建用于HF处理和内存分析的虚拟输入。
用于内存分析¶
覆盖抽象方法 get_dummy_text 和 get_dummy_mm_data,以构建用于内存分析的虚拟输入。这些虚拟输入应导致模型的 worst-case 内存使用,以便vLLM为其保留正确的内存量。
假设内存使用量随token数量增加而增加,则可以构建虚拟输入以最大化输出embeddings的数量,该数量与占位符特征token的数量相同。
查看HF的 LlavaForConditionalGeneration
代码
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (
(input_ids == self.config.image_token_index)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
每张图片的占位符特征token数量是 image_features.shape[1]
。 image_features
在 get_image_features
方法内部计算。
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
我们可以推断出 image_features.shape[1]
是基于视觉塔(对于 llava-hf/llava-1.5-7b-hf
模型来说是 CLIPVisionModel
)的 image_outputs.hidden_states.shape[1]
。此外,我们只需要序列长度(张量的第二个维度)即可获得 image_features.shape[1]
。序列长度由 CLIPVisionTransformer
中的初始隐藏状态决定,因为注意力机制不会改变输出隐藏状态的序列长度。
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
要找到序列长度,我们转向 CLIPVisionEmbeddings
的代码
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
我们可以推断出 embeddings.shape[1] == self.num_positions
,其中
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
总的来说,一张图片的占位符特征token数量可以计算为
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
hf_config = self.get_hf_config()
hf_processor = self.get_hf_processor()
image_size = hf_config.vision_config.image_size
patch_size = hf_config.vision_config.patch_size
num_image_tokens = (image_size // patch_size) ** 2 + 1
if hf_processor.vision_feature_select_strategy == "default":
num_image_tokens -= 1
return num_image_tokens
注意,图片token的数量不依赖于图片的宽度和高度。我们可以简单地使用一个虚拟的 image_size
来计算多模态性能分析数据。
# NOTE: In actuality, this is usually implemented as part of the
# model's subclass of `BaseProcessingInfo`, but we show it as is
# here for simplicity.
def get_image_size_with_most_features(self) -> ImageSize:
hf_config = self.get_hf_config()
width = height = hf_config.image_size
return ImageSize(width=width, height=height)
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_images = mm_counts.get("image", 0)
target_width, target_height = \
self.info.get_image_size_with_most_features()
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
对于文本,我们只需从模型配置中扩展多模态图片token,以匹配所需的图片数量。
查看HF的 FuyuForCausalLM
代码
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
if image_patches is not None and past_key_values is None:
patch_embeddings = [
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
.squeeze(0)
.to(inputs_embeds.device)
for patch in image_patches
]
inputs_embeds = self.gather_continuous_embeddings(
word_embeddings=inputs_embeds,
continuous_embeddings=patch_embeddings,
image_patch_input_indices=image_patches_indices,
)
batch中第 i
个item的占位符特征token数量是 patch_embeddings[i].shape[0]
,这与 image_patches[i].shape[0]
相同,即 num_total_patches
。
与LLaVA不同,Fuyu没有在建模文件中定义patch的数量。我们可以从哪里获取更多信息?考虑到模型输入来自 FuyuProcessor
的输出,让我们查看预处理文件。
图片输出是通过在 FuyuProcessor
内部调用 FuyuImageProcessor.preprocess
,然后再调用 FuyuImageProcessor.preprocess_with_tokenizer_info
获得的。
在 FuyuImageProcessor.preprocess
中,图片会被调整大小并填充到目标 FuyuImageProcessor.size
,并返回调整大小后(但填充前)的尺寸作为元数据。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
if do_resize:
batch_images = [
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
for images in batch_images
]
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
if do_pad:
batch_images = [
[
self.pad_image(
image,
size=size,
mode=padding_mode,
constant_values=padding_value,
input_data_format=input_data_format,
)
for image in images
]
for images in batch_images
]
在 FuyuImageProcessor.preprocess_with_tokenizer_info
中,图片会根据此元数据分割成patches。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized: # variable_sized=True
new_h = min(
image_height,
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
)
new_w = min(
image_width,
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
)
image = image[:, :new_h, :new_w]
image_height, image_width = new_h, new_w
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
patch的数量则由 FuyuImageProcessor.get_num_patches
定义。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
if image_height % patch_height != 0:
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
这些图片patches对应于占位符token(|SPEAKER|
)。因此,我们只需要最大化图片patches的数量。由于输入图片首先被调整大小以适应 image_processor.size
范围内,我们可以通过输入尺寸等于 image_processor.size
的图片来最大化图片patches的数量。
def get_image_size_with_most_features(self) -> ImageSize:
image_processor = self.get_image_processor()
return ImageSize(width=image_processor.size["width"],
height=image_processor.size["height"])
Fuyu不期望HF处理器的输入中包含图片占位符,因此无论图片的数量是多少,虚拟prompt文本都为空。
对于多模态图片性能分析数据,其逻辑与LLaVA非常相似。
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
return {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
4. 指定处理细节¶
之后,创建一个 BaseMultiModalProcessor 的子类,以填写HF处理的缺失细节。
信息
多模态字段¶
覆盖 _get_mm_fields_config,以返回HF处理器输出的与输入多模态项相关的张量schema。
CLIPImageProcessor
的输出是一个简单的张量,形状为 (num_images, num_channels, image_height, image_width)
。
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
因此,我们如下覆盖 _get_mm_fields_config:
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
)
注意
我们的 实际代码 还额外支持预计算的图片embeddings,可以通过 image_embeds
参数传递给模型。
FuyuImageProcessor.preprocess_with_tokenizer_info
的 image_patches
输出会连接batch中每个item所属的图片的patches。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
image_input_ids.append(tensor_of_image_ids)
image_patches.append(patches)
else:
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)
因此,FuyuImageProcessor
输出的 image_patches
形状为 (1, num_images, num_patches, patch_width * patch_height * num_channels)
。
为了支持像LLaVA中那样使用 [MultiModalFieldConfig.batched][],我们通过覆盖 [BaseMultiModalProcessor._call_hf_processor][] 来移除额外的batch维度。
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
processed_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
image_patches = processed_outputs.get("image_patches")
if image_patches is not None:
images = mm_data["images"]
assert isinstance(images, list)
# Original output: (1, num_images, Pn, Px * Py * C)
# New output: (num_images, Pn, Px * Py * C)
assert (isinstance(image_patches, list)
and len(image_patches) == 1)
assert (isinstance(image_patches[0], torch.Tensor)
and len(image_patches[0]) == len(images))
processed_outputs["image_patches"] = image_patches[0]
return processed_outputs
注意
我们的 实际代码 对纯文本输入有特殊处理,以防止HF处理器发出不必要的警告。
这使得我们可以如下覆盖 _get_mm_fields_config:
Prompt更新¶
覆盖 _get_prompt_updates,以返回一个 PromptUpdate 实例列表。
每个 PromptUpdate 实例指定HF处理器执行的更新操作(例如:插入、替换)。
查看HF的 LlavaProcessor
代码
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
prompt_strings.append(sample)
它只是简单地将每个输入的 image_token
重复与占位符特征token数量(num_image_tokens
)相等的次数。基于此,我们如下覆盖 _get_prompt_updates:
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
image_token_id = hf_config.image_token_index
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement,
),
]
回顾步骤2中的特征token布局
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
我们定义一个辅助函数直接返回 ncols
和 nrows
。
def get_image_feature_grid_size(
self,
*,
image_width: int,
image_height: int,
) -> tuple[int, int]:
image_processor = self.get_image_processor()
target_width = image_processor.size["width"]
target_height = image_processor.size["height"]
patch_width = image_processor.patch_size["width"]
patch_height = image_processor.patch_size["height"]
if not (image_width <= target_width and image_height <= target_height):
height_scale_factor = target_height / image_height
width_scale_factor = target_width / image_width
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
image_height = int(image_height * optimal_scale_factor)
image_width = int(image_width * optimal_scale_factor)
ncols = math.ceil(image_width / patch_width)
nrows = math.ceil(image_height / patch_height)
return ncols, nrows
基于此,我们最初可以将替换token定义为
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
# `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
# `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
然而,这并不完全正确。在调用 FuyuImageProcessor.preprocess_with_tokenizer_info
后,一个BOS token (<s>
) 也会被添加到prompt中。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
tokenizer=self.tokenizer,
prompts=prompts,
scale_factors=scale_factors,
max_tokens_to_generate=self.max_tokens_to_generate,
max_position_embeddings=self.max_position_embeddings,
add_BOS=True,
add_beginning_of_answer_token=True,
)
为了仅将视觉embeddings分配给图片token,您可以返回一个 PromptUpdateDetails 实例,而不是字符串。
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id # `<s>`
assert isinstance(bos_token_id, int)
def get_replacement_fuyu(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
[_NEWLINE_TOKEN_ID]) * nrows
return PromptUpdateDetails.select_token_id(
image_tokens + [bos_token_id],
embed_token_id=_IMAGE_TOKEN_ID,
)
最后,注意到HF处理器会从tokenized的prompt中移除 |ENDOFTEXT|
token,我们可以搜索它以在字符串的开头进行替换。
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id
assert isinstance(bos_token_id, int)
tokenizer = self.info.get_tokenizer()
eot_token_id = tokenizer.bos_token_id
assert isinstance(eot_token_id, int)
def get_replacement_fuyu(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
[_NEWLINE_TOKEN_ID]) * nrows
return PromptUpdateDetails.select_token_id(
image_tokens + [bos_token_id],
embed_token_id=_IMAGE_TOKEN_ID,
)
return [
PromptReplacement(
modality="image",
target=[eot_token_id],
replacement=get_replacement_fuyu,
)
]
5. 注册处理器相关类¶
定义了 BaseProcessingInfo (步骤2)、 BaseDummyInputsBuilder (步骤3) 和 BaseMultiModalProcessor (步骤4) 后,用 {meth}MULTIMODAL_REGISTRY.register_processor <vllm.multimodal.registry.MultiModalRegistry.register_processor>
装饰模型类,将它们注册到多模态注册表中。
from vllm.model_executor.models.interfaces import SupportsMultiModal
+ from vllm.multimodal import MULTIMODAL_REGISTRY
+ @MULTIMODAL_REGISTRY.register_processor(YourMultiModalProcessor,
+ info=YourProcessingInfo,
+ dummy_inputs=YourDummyInputsBuilder)
class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
注意事项¶
不替换地插入特征token¶
一些HF处理器直接插入特征token,而不替换原始prompt中的任何内容。在这种情况下,您可以在 _get_prompt_updates 内部使用 PromptInsertion 而不是 PromptReplacement。
示例
- BLIP-2(在prompt开头插入): vllm/model_executor/models/blip2.py
- Florence2(在prompt开头插入): vllm/model_executor/models/florence2.py
- Molmo(在
<|endoftext|>
token后插入): vllm/model_executor/models/molmo.py
处理与多模态数据无关的prompt更新¶
_get_prompt_updates 假定每次prompt更新的应用对应一个多模态项。如果HF处理器无论有多少多模态项都执行额外处理,您应该覆盖 _apply_hf_processor_tokens_only,以便处理后的token输入与将HF处理器应用于文本输入的结果一致。这是因为根据 我们的设计,token输入会绕过HF处理器。
示例
- Chameleon(附加
sep_token
): vllm/model_executor/models/chameleon.py - Fuyu(附加
boa_token
): vllm/model_executor/models/fuyu.py - Molmo(应用未在其他地方定义的chat模板): vllm/model_executor/models/molmo.py
自定义HF处理器¶
有些模型在HF Hub上没有定义HF处理器类。在这种情况下,您可以定义一个具有与HF处理器相同调用签名的自定义HF处理器,并将其传递给 _call_hf_processor。
示例
- DeepSeek-VL2: vllm/model_executor/models/deepseek_vl2.py
- InternVL: vllm/model_executor/models/internvl.py
- Qwen-VL: vllm/model_executor/models/qwen_vl.py