多模态支持#
本文档将引导您完成扩展基本模型的步骤,使其可以接受多模态输入。
1. 更新基础 vLLM 模型#
假定您已按照这些步骤在 vLLM 中实现了模型。 进一步按如下方式更新模型
在
forward()
中为每个对应于多模态输入的输入张量保留一个关键字参数,如下例所示def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, + pixel_values: torch.Tensor, ) -> SamplerOutput:
更方便的是,您可以简单地将
**kwargs
传递给forward()
方法,并从中检索多模态输入的关键字参数。实现
get_multimodal_embeddings()
,该方法返回通过模型的模态 tokenizer 运行多模态输入而获得的嵌入。 下面我们提供了一个典型的实现模式的样板,但您可以随意根据自己的需求进行调整。class YourModelForImage2Seq(nn.Module): ... def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor: assert self.vision_encoder is not None image_features = self.vision_encoder(image_input) return self.multi_modal_projector(image_features) def get_multimodal_embeddings( self, **kwargs: object) -> Optional[MultiModalEmbeddings]: # Validate the multimodal input keyword arguments image_input = self._parse_and_validate_image_input(**kwargs) if image_input is None: return None # Run multimodal inputs through encoder and projector vision_embeddings = self._process_image_input(image_input) return vision_embeddings
重要提示
返回的
multimodal_embeddings
必须是 形状为(num_items, feature_size, hidden_size)
的 3Dtorch.Tensor
,或者 形状为(feature_size, hidden_size)
的 2Dtorch.Tensor
的列表/元组,以便multimodal_embeddings[i]
检索从请求的第i
个多模态数据项(例如,图像)生成的嵌入。实现
get_input_embeddings()
以将multimodal_embeddings
与来自input_ids
的文本嵌入合并。 如果模型的输入处理已正确实现(请参阅以下章节),那么您可以利用我们提供的实用函数轻松合并嵌入。from .utils import merge_multimodal_embeddings class YourModelForImage2Seq(nn.Module): ... def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, ) -> torch.Tensor: # `get_input_embeddings` should already be implemented for the language # model as one of the requirements of basic vLLM model implementation. inputs_embeds = self.language_model.get_input_embeddings(input_ids) if multimodal_embeddings is not None: inputs_embeds = merge_multimodal_embeddings( input_ids=input_ids, inputs_embeds=inputs_embeds, multimodal_embeddings=multimodal_embeddings, placeholder_token_id=self.config.image_token_index) return inputs_embeds
实现
get_language_model()
getter 以提供对底层语言模型的稳定访问。class YourModelForImage2Seq(nn.Module): ... def get_language_model(self) -> torch.nn.Module: # Change `language_model` according to your implementation. return self.language_model
完成上述步骤后,使用
SupportsMultiModal
接口更新模型类。+ from vllm.model_executor.models.interfaces import SupportsMultiModal - class YourModelForImage2Seq(nn.Module): + class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
注意
模型类不必命名为
*ForCausalLM
。 有关一些示例,请查看 HuggingFace Transformers 文档。
2. 指定处理信息#
接下来,创建 BaseProcessingInfo
的子类,以提供与 HF 处理相关的基本信息。
输入项的最大数量#
您需要覆盖抽象方法 get_supported_mm_limits()
,以返回模型支持的每种模态的最大输入项数。
例如,如果模型支持任意数量的图像,但每个 prompt 仅支持一个视频
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"image": None, "video": 1}
3. 指定虚拟输入#
然后,继承 BaseDummyInputsBuilder
以构建用于 HF 处理以及内存性能分析的虚拟输入。
用于内存性能分析#
覆盖抽象方法 get_dummy_processor_inputs()
以构建用于内存性能分析的虚拟输入。 此虚拟输入应导致模型的最坏情况内存使用,以便 vLLM 可以为其保留正确的内存量。
假设内存使用量随着 tokens 的数量增加而增加,则可以构建虚拟输入以最大化输出嵌入的数量,这与占位符特征 tokens 的数量相同。
查看 HF 的 LlavaForConditionalGeneration
代码
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (
(input_ids == self.config.image_token_index)
.unsqueeze(-1)
.expand_as(inputs_embeds)
.to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
每个图像的占位符特征 tokens 的数量为 image_features.shape[1]
。image_features
在 get_image_features
方法内部计算
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
我们可以推断出 image_features.shape[1]
基于视觉塔(llava-hf/llava-1.5-7b-hf
模型的 CLIPVisionModel
)的 image_outputs.hidden_states.shape[1]
。 此外,我们只需要序列长度(张量的第二个维度)即可获得 image_features.shape[1]
。 序列长度由 CLIPVisionTransformer
中的初始隐藏状态确定,因为注意力机制不会更改输出隐藏状态的序列长度。
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
为了找到序列长度,我们转向 CLIPVisionEmbeddings
的代码
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
我们可以推断出 embeddings.shape[1] == self.num_positions
,其中
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
总的来说,图像的占位符特征 tokens 的数量可以计算为
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
) -> int:
hf_config = self.get_hf_config()
hf_processor = self.get_hf_processor()
image_size = hf_config.vision_config.image_size
patch_size = hf_config.vision_config.patch_size
num_image_tokens = (image_size // patch_size) ** 2 + 1
if hf_processor.vision_feature_select_strategy == "default":
num_image_tokens -= 1
return num_image_tokens
请注意,图像 tokens 的数量不取决于图像的宽度和高度。 我们可以简单地使用虚拟 image_size
def get_image_size_with_most_features(self) -> ImageSize:
hf_config = self.get_hf_config()
width = height = hf_config.image_size
return ImageSize(width=width, height=height)
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
num_images = mm_counts.get("image", 0)
processor = self.info.get_hf_processor()
image_token = processor.image_token
hf_config = self.get_hf_config()
target_width, target_height = self.info.get_image_size_with_most_features()
mm_data = {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text=image_token * num_images,
mm_data=mm_data,
)
查看 HF 的 FuyuForCausalLM
代码
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
if image_patches is not None and past_key_values is None:
patch_embeddings = [
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
.squeeze(0)
.to(inputs_embeds.device)
for patch in image_patches
]
inputs_embeds = self.gather_continuous_embeddings(
word_embeddings=inputs_embeds,
continuous_embeddings=patch_embeddings,
image_patch_input_indices=image_patches_indices,
)
批次中第 i
个项目的占位符特征 tokens 的数量为 patch_embeddings[i].shape[0]
,这与 image_patches[i].shape[0]
相同,即 num_total_patches
。
与 LLaVA 不同,Fuyu 未在建模文件中定义补丁的数量。 我们在哪里可以获得更多信息? 考虑到模型输入来自 FuyuProcessor
的输出,让我们查看预处理文件。
图像输出是通过调用 FuyuImageProcessor.preprocess
,然后在 FuyuProcessor
内部调用 FuyuImageProcessor.preprocess_with_tokenizer_info
获得的。
在 FuyuImageProcessor.preprocess
中,图像被调整大小并填充到目标 FuyuImageProcessor.size
,返回调整大小后(但在填充之前)的维度作为元数据。
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
if do_resize:
batch_images = [
[self.resize(image, size=size, input_data_format=input_data_format) for image in images]
for images in batch_images
]
image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]
if do_pad:
batch_images = [
[
self.pad_image(
image,
size=size,
mode=padding_mode,
constant_values=padding_value,
input_data_format=input_data_format,
)
for image in images
]
for images in batch_images
]
在 FuyuImageProcessor.preprocess_with_tokenizer_info
中,图像根据此元数据拆分为补丁
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized: # variable_sized=True
new_h = min(
image_height,
math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
)
new_w = min(
image_width,
math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
)
image = image[:, :new_h, :new_w]
image_height, image_width = new_h, new_w
num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
[num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]
补丁的数量又由 FuyuImageProcessor.get_num_patches
定义
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]
if image_height % patch_height != 0:
raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
raise ValueError(f"{image_width=} must be divisible by {patch_width}")
num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w
这些图像补丁对应于占位符 tokens (|SPEAKER|
)。 因此,我们只需要最大化图像补丁的数量。 由于输入图像首先调整大小以适应 image_processor.size
内,因此我们可以通过输入大小等于 image_processor.size
的图像来最大化图像补丁的数量。
def get_image_size_with_most_features(self) -> ImageSize:
image_processor = self.get_image_processor()
return ImageSize(width=image_processor.size["width"],
height=image_processor.size["height"])
Fuyu 不希望 HF 处理器输入中存在图像占位符,因此无论图像数量多少,虚拟 prompt 文本都为空。 否则,此方法的逻辑与 LLaVA 非常相似
def get_dummy_processor_inputs(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> ProcessorInputs:
target_width, target_height = \
self.info.get_image_size_with_most_features()
num_images = mm_counts.get("image", 0)
mm_data = {
"image":
self._get_dummy_images(width=target_width,
height=target_height,
num_images=num_images)
}
return ProcessorInputs(
prompt_text="",
mm_data=mm_data,
)
4. 指定处理细节#
之后,创建 BaseMultiModalProcessor
的子类,以填写有关 HF 处理的缺失细节。
另请参阅
多模态字段#
覆盖 _get_mm_fields_config()
以返回与输入多模态项相关的 HF 处理器输出的张量的架构。
CLIPImageProcessor
的输出是一个简单的张量,形状为 (num_images, num_channels, image_height, image_width)
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in all_images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
因此,我们覆盖 _get_mm_fields_config()
如下
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
pixel_values=MultiModalFieldConfig.batched("image"),
)
注意
我们的实际代码还支持预计算的图像嵌入,可以通过 image_embeds
参数传递给模型。
FuyuImageProcessor.preprocess_with_tokenizer_info
的 image_patches
输出连接了属于批次中项目的每个图像的补丁
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
image_input_ids.append(tensor_of_image_ids)
image_patches.append(patches)
else:
image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))
batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)
FuyuImageProcessor
输出的 image_patches
的形状因此为 (1, num_images, num_patches, patch_width * patch_height * num_channels)
。
为了支持像 LLaVA 中那样使用 MultiModalFieldConfig.batched()
,我们通过覆盖 BaseMultiModalProcessor._call_hf_processor()
来删除额外的批次维度
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
processed_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
image_patches = processed_outputs.get("image_patches")
if image_patches is not None:
images = mm_data["images"]
assert isinstance(images, list)
# Original output: (1, num_images, Pn, Px * Py * C)
# New output: (num_images, Pn, Px * Py * C)
assert (isinstance(image_patches, list)
and len(image_patches) == 1)
assert (isinstance(image_patches[0], torch.Tensor)
and len(image_patches[0]) == len(images))
processed_outputs["image_patches"] = image_patches[0]
return processed_outputs
注意
我们的实际代码对仅文本输入进行了特殊处理,以防止 HF 处理器发出不必要的警告。
这使我们可以覆盖 _get_mm_fields_config()
如下
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(image_patches=MultiModalFieldConfig.batched("image"))
Prompt 更新#
覆盖 _get_prompt_updates()
以返回 PromptUpdate
实例的列表。
每个 PromptUpdate
实例指定由 HF 处理器执行的更新操作(例如:插入、替换)。
查看 HF 的 LlavaProcessor
# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
prompt_strings.append(sample)
它只是将每个输入 image_token
重复多次,次数等于占位符特征 tokens 的数量 (num_image_tokens
)。 基于此,我们覆盖 _get_prompt_updates()
如下
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
image_token_id = hf_config.image_token_index
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
num_image_tokens = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
)
return [image_token_id] * num_image_tokens
return [
PromptReplacement(
modality="image",
target=[image_token_id],
replacement=get_replacement,
),
]
回顾步骤 2 中的特征 tokens 的布局
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
我们定义一个辅助函数来直接返回 ncols
和 nrows
def get_image_feature_grid_size(
self,
*,
image_width: int,
image_height: int,
) -> tuple[int, int]:
image_processor = self.get_image_processor()
target_width = image_processor.size["width"]
target_height = image_processor.size["height"]
patch_width = image_processor.patch_size["width"]
patch_height = image_processor.patch_size["height"]
if not (image_width <= target_width and image_height <= target_height):
height_scale_factor = target_height / image_height
width_scale_factor = target_width / image_width
optimal_scale_factor = min(height_scale_factor, width_scale_factor)
image_height = int(image_height * optimal_scale_factor)
image_width = int(image_width * optimal_scale_factor)
ncols = math.ceil(image_width / patch_width)
nrows = math.ceil(image_height / patch_height)
return ncols, nrows
基于此,我们可以最初将我们的替换 tokens 定义为
def get_replacement(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
# `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
# `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows
但是,这并不完全正确。 在调用 FuyuImageProcessor.preprocess_with_tokenizer_info
之后,BOS token (<s>
) 也被添加到 promopt
# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
tokenizer=self.tokenizer,
prompts=prompts,
scale_factors=scale_factors,
max_tokens_to_generate=self.max_tokens_to_generate,
max_position_embeddings=self.max_position_embeddings,
add_BOS=True,
add_beginning_of_answer_token=True,
)
要仅将视觉嵌入分配给图像 tokens,而不是字符串,您可以返回 PromptUpdateDetails
的实例
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id # `<s>`
assert isinstance(bos_token_id, int)
def get_replacement_fuyu(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
[_NEWLINE_TOKEN_ID]) * nrows
return PromptUpdateDetails.select_token_id(
image_tokens + [bos_token_id],
embed_token_id=_IMAGE_TOKEN_ID,
)
最后,注意到 HF 处理器从 token 化的 prompt 中删除了 |ENDOFTEXT|
token,我们可以搜索它以在字符串的开头进行替换
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id
assert isinstance(bos_token_id, int)
tokenizer = self.info.get_tokenizer()
eot_token_id = tokenizer.bos_token_id
assert isinstance(eot_token_id, int)
def get_replacement_fuyu(item_idx: int):
images = mm_items.get_items("image", ImageProcessorItems)
image_size = images.get_image_size(item_idx)
ncols, nrows = self.info.get_image_feature_grid_size(
image_width=image_size.width,
image_height=image_size.height,
)
image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
[_NEWLINE_TOKEN_ID]) * nrows
return PromptUpdateDetails.select_token_id(
image_tokens + [bos_token_id],
embed_token_id=_IMAGE_TOKEN_ID,
)
return [
PromptReplacement(
modality="image",
target=[eot_token_id],
replacement=get_replacement_fuyu,
)
]
注释#
插入特征 tokens 而不替换#
某些 HF 处理器直接插入特征 tokens,而无需替换原始 prompt 中的任何内容。 在这种情况下,您可以使用 PromptInsertion
而不是 PromptReplacement
在 _get_prompt_updates()
内部。
示例
BLIP-2(在 prompt 开头插入):vllm/model_executor/models/blip2.py
Florence2(在 prompt 开头插入):vllm/model_executor/models/florence2.py
Molmo(在
<|endoftext|>
token 之后插入):vllm/model_executor/models/molmo.py
自定义 HF 处理器#
某些模型未在 HF Hub 上定义 HF 处理器类。 在这种情况下,您可以定义一个自定义 HF 处理器,该处理器具有与 HF 处理器相同的调用签名,并将其传递给 _call_hf_processor()
。
示例
DeepSeek-VL2:vllm/model_executor/models/deepseek_vl2.py