多模态支持#

本文档将引导您完成扩展基本模型的步骤,使其可以接受多模态输入

1. 更新基础 vLLM 模型#

假定您已按照这些步骤在 vLLM 中实现了模型。 进一步按如下方式更新模型

  • forward() 中为每个对应于多模态输入的输入张量保留一个关键字参数,如下例所示

      def forward(
          self,
          input_ids: torch.Tensor,
          positions: torch.Tensor,
    +     pixel_values: torch.Tensor,
      ) -> SamplerOutput:
    

    更方便的是,您可以简单地将 **kwargs 传递给 forward() 方法,并从中检索多模态输入的关键字参数。

  • 实现 get_multimodal_embeddings(),该方法返回通过模型的模态 tokenizer 运行多模态输入而获得的嵌入。 下面我们提供了一个典型的实现模式的样板,但您可以随意根据自己的需求进行调整。

    class YourModelForImage2Seq(nn.Module):
        ...
    
        def _process_image_input(self, image_input: YourModelImageInputs) -> torch.Tensor:
    
            assert self.vision_encoder is not None
            image_features = self.vision_encoder(image_input)
            return self.multi_modal_projector(image_features)
    
        def get_multimodal_embeddings(
                self, **kwargs: object) -> Optional[MultiModalEmbeddings]:
    
            # Validate the multimodal input keyword arguments
            image_input = self._parse_and_validate_image_input(**kwargs)
            if image_input is None:
                return None
    
            # Run multimodal inputs through encoder and projector
            vision_embeddings = self._process_image_input(image_input)
            return vision_embeddings
    

    重要提示

    返回的 multimodal_embeddings 必须是 形状为 (num_items, feature_size, hidden_size) 的 3D torch.Tensor,或者 形状为 (feature_size, hidden_size) 的 2D torch.Tensor 的列表/元组,以便 multimodal_embeddings[i] 检索从请求的第 i 个多模态数据项(例如,图像)生成的嵌入。

  • 实现 get_input_embeddings() 以将 multimodal_embeddings 与来自 input_ids 的文本嵌入合并。 如果模型的输入处理已正确实现(请参阅以下章节),那么您可以利用我们提供的实用函数轻松合并嵌入。

    from .utils import merge_multimodal_embeddings
    
    class YourModelForImage2Seq(nn.Module):
        ...
    
        def get_input_embeddings(
            self,
            input_ids: torch.Tensor,
            multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
        ) -> torch.Tensor:
    
            # `get_input_embeddings` should already be implemented for the language 
            # model as one of the requirements of basic vLLM model implementation.
            inputs_embeds = self.language_model.get_input_embeddings(input_ids)
    
            if multimodal_embeddings is not None:
                inputs_embeds = merge_multimodal_embeddings(
                    input_ids=input_ids, 
                    inputs_embeds=inputs_embeds, 
                    multimodal_embeddings=multimodal_embeddings,
                    placeholder_token_id=self.config.image_token_index)
    
            return inputs_embeds
    
  • 实现 get_language_model() getter 以提供对底层语言模型的稳定访问。

    class YourModelForImage2Seq(nn.Module):
        ...
    
        def get_language_model(self) -> torch.nn.Module:
            # Change `language_model` according to your implementation.
            return self.language_model
    
  • 完成上述步骤后,使用 SupportsMultiModal 接口更新模型类。

    + from vllm.model_executor.models.interfaces import SupportsMultiModal
    
    - class YourModelForImage2Seq(nn.Module):
    + class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
    

    注意

    模型类不必命名为 *ForCausalLM。 有关一些示例,请查看 HuggingFace Transformers 文档

2. 指定处理信息#

接下来,创建 BaseProcessingInfo 的子类,以提供与 HF 处理相关的基本信息。

输入项的最大数量#

您需要覆盖抽象方法 get_supported_mm_limits(),以返回模型支持的每种模态的最大输入项数。

例如,如果模型支持任意数量的图像,但每个 prompt 仅支持一个视频

def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
    return {"image": None, "video": 1}

3. 指定虚拟输入#

然后,继承 BaseDummyInputsBuilder 以构建用于 HF 处理以及内存性能分析的虚拟输入。

用于内存性能分析#

覆盖抽象方法 get_dummy_processor_inputs() 以构建用于内存性能分析的虚拟输入。 此虚拟输入应导致模型的最坏情况内存使用,以便 vLLM 可以为其保留正确的内存量。

假设内存使用量随着 tokens 的数量增加而增加,则可以构建虚拟输入以最大化输出嵌入的数量,这与占位符特征 tokens 的数量相同。

查看 HF 的 LlavaForConditionalGeneration 代码

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L530-L544
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0] * image_features.shape[1]

if n_image_tokens != n_image_features:
    raise ValueError(
        f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
    )
special_image_mask = (
    (input_ids == self.config.image_token_index)
    .unsqueeze(-1)
    .expand_as(inputs_embeds)
    .to(inputs_embeds.device)
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)

每个图像的占位符特征 tokens 的数量为 image_features.shape[1]image_featuresget_image_features 方法内部计算

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/modeling_llava.py#L290-L300
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)

selected_image_feature = image_outputs.hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
    selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
    selected_image_feature = selected_image_feature
else:
    raise ValueError(f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}")
image_features = self.multi_modal_projector(selected_image_feature)
return image_features

我们可以推断出 image_features.shape[1] 基于视觉塔(llava-hf/llava-1.5-7b-hf 模型的 CLIPVisionModel)的 image_outputs.hidden_states.shape[1]。 此外,我们只需要序列长度(张量的第二个维度)即可获得 image_features.shape[1]。 序列长度由 CLIPVisionTransformer 中的初始隐藏状态确定,因为注意力机制不会更改输出隐藏状态的序列长度。

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L1094-L1102
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)

encoder_outputs = self.encoder(
    inputs_embeds=hidden_states,
    output_attentions=output_attentions,
    output_hidden_states=output_hidden_states,
    return_dict=return_dict,
)

为了找到序列长度,我们转向 CLIPVisionEmbeddings 的代码

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L247-L257
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))  # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)

class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
if interpolate_pos_encoding:
    embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
    embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings

我们可以推断出 embeddings.shape[1] == self.num_positions,其中

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/modeling_clip.py#L195-L196
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1

总的来说,图像的占位符特征 tokens 的数量可以计算为

def get_num_image_tokens(
    self,
    *,
    image_width: int,
    image_height: int,
) -> int:
    hf_config = self.get_hf_config()
    hf_processor = self.get_hf_processor()

    image_size = hf_config.vision_config.image_size
    patch_size = hf_config.vision_config.patch_size

    num_image_tokens = (image_size // patch_size) ** 2 + 1
    if hf_processor.vision_feature_select_strategy == "default":
        num_image_tokens -= 1

    return num_image_tokens

请注意,图像 tokens 的数量不取决于图像的宽度和高度。 我们可以简单地使用虚拟 image_size

def get_image_size_with_most_features(self) -> ImageSize:
    hf_config = self.get_hf_config()
    width = height = hf_config.image_size
    return ImageSize(width=width, height=height)

def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    num_images = mm_counts.get("image", 0)

    processor = self.info.get_hf_processor()
    image_token = processor.image_token
  
    hf_config = self.get_hf_config()
    target_width, target_height = self.info.get_image_size_with_most_features()

    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                               height=target_height,
                               num_images=num_images)
    }

    return ProcessorInputs(
        prompt_text=image_token * num_images,
        mm_data=mm_data,
    )

查看 HF 的 FuyuForCausalLM 代码

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/modeling_fuyu.py#L311-L322
if image_patches is not None and past_key_values is None:
    patch_embeddings = [
        self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype))
        .squeeze(0)
        .to(inputs_embeds.device)
        for patch in image_patches
    ]
    inputs_embeds = self.gather_continuous_embeddings(
        word_embeddings=inputs_embeds,
        continuous_embeddings=patch_embeddings,
        image_patch_input_indices=image_patches_indices,
    )

批次中第 i 个项目的占位符特征 tokens 的数量为 patch_embeddings[i].shape[0],这与 image_patches[i].shape[0] 相同,即 num_total_patches

与 LLaVA 不同,Fuyu 未在建模文件中定义补丁的数量。 我们在哪里可以获得更多信息? 考虑到模型输入来自 FuyuProcessor 的输出,让我们查看预处理文件

图像输出是通过调用 FuyuImageProcessor.preprocess,然后在 FuyuProcessor 内部调用 FuyuImageProcessor.preprocess_with_tokenizer_info 获得的。

FuyuImageProcessor.preprocess 中,图像被调整大小并填充到目标 FuyuImageProcessor.size,返回调整大小后(但在填充之前)的维度作为元数据。

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L541-L544
image_encoding = self.image_processor.preprocess(images, **output_kwargs["images_kwargs"])
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L480-L
if do_resize:
    batch_images = [
        [self.resize(image, size=size, input_data_format=input_data_format) for image in images]
        for images in batch_images
    ]

image_sizes = [get_image_size(images[0], channel_dim=input_data_format) for images in batch_images]
image_unpadded_heights = [[image_size[0]] for image_size in image_sizes]
image_unpadded_widths = [[image_size[1]] for image_size in image_sizes]

if do_pad:
    batch_images = [
        [
            self.pad_image(
                image,
                size=size,
                mode=padding_mode,
                constant_values=padding_value,
                input_data_format=input_data_format,
            )
            for image in images
        ]
        for images in batch_images
    ]

FuyuImageProcessor.preprocess_with_tokenizer_info 中,图像根据此元数据拆分为补丁

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L425
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L638-L658
image_height, image_width = image.shape[1], image.shape[2]
if variable_sized:  # variable_sized=True
    new_h = min(
        image_height,
        math.ceil(image_unpadded_h[batch_index, subseq_index] / patch_height) * patch_height,
    )
    new_w = min(
        image_width,
        math.ceil(image_unpadded_w[batch_index, subseq_index] / patch_width) * patch_width,
    )
    image = image[:, :new_h, :new_w]
    image_height, image_width = new_h, new_w

num_patches = self.get_num_patches(image_height=image_height, image_width=image_width)
tensor_of_image_ids = torch.full(
    [num_patches], image_placeholder_id, dtype=torch.int32, device=image_input.device
)
patches = self.patchify_image(image=image.unsqueeze(0)).squeeze(0)
assert num_patches == patches.shape[0]

补丁的数量又由 FuyuImageProcessor.get_num_patches 定义

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L552-L562
patch_size = patch_size if patch_size is not None else self.patch_size
patch_height, patch_width = self.patch_size["height"], self.patch_size["width"]

if image_height % patch_height != 0:
    raise ValueError(f"{image_height=} must be divisible by {patch_height}")
if image_width % patch_width != 0:
    raise ValueError(f"{image_width=} must be divisible by {patch_width}")

num_patches_per_dim_h = image_height // patch_height
num_patches_per_dim_w = image_width // patch_width
num_patches = num_patches_per_dim_h * num_patches_per_dim_w

这些图像补丁对应于占位符 tokens (|SPEAKER|)。 因此,我们只需要最大化图像补丁的数量。 由于输入图像首先调整大小以适应 image_processor.size 内,因此我们可以通过输入大小等于 image_processor.size 的图像来最大化图像补丁的数量。

def get_image_size_with_most_features(self) -> ImageSize:
    image_processor = self.get_image_processor()
    return ImageSize(width=image_processor.size["width"],
                        height=image_processor.size["height"])

Fuyu 不希望 HF 处理器输入中存在图像占位符,因此无论图像数量多少,虚拟 prompt 文本都为空。 否则,此方法的逻辑与 LLaVA 非常相似

def get_dummy_processor_inputs(
    self,
    seq_len: int,
    mm_counts: Mapping[str, int],
) -> ProcessorInputs:
    target_width, target_height = \
        self.info.get_image_size_with_most_features()
    num_images = mm_counts.get("image", 0)

    mm_data = {
        "image":
        self._get_dummy_images(width=target_width,
                                height=target_height,
                                num_images=num_images)
    }

    return ProcessorInputs(
        prompt_text="",
        mm_data=mm_data,
    )

4. 指定处理细节#

之后,创建 BaseMultiModalProcessor 的子类,以填写有关 HF 处理的缺失细节。

另请参阅

多模态数据处理

多模态字段#

覆盖 _get_mm_fields_config() 以返回与输入多模态项相关的 HF 处理器输出的张量的架构。

CLIPImageProcessor 的输出是一个简单的张量,形状为 (num_images, num_channels, image_height, image_width)

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/clip/image_processing_clip.py#L339-L345
images = [
    to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
    for image in all_images
]

data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)

因此,我们覆盖 _get_mm_fields_config() 如下

def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(
        pixel_values=MultiModalFieldConfig.batched("image"),
    )

注意

我们的实际代码还支持预计算的图像嵌入,可以通过 image_embeds 参数传递给模型。

FuyuImageProcessor.preprocess_with_tokenizer_infoimage_patches 输出连接了属于批次中项目的每个图像的补丁

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/image_processing_fuyu.py#L673-L679
        image_input_ids.append(tensor_of_image_ids)
        image_patches.append(patches)
    else:
        image_input_ids.append(torch.tensor([], dtype=torch.int32, device=image_input.device))

batch_image_input_ids.append(image_input_ids)
batch_image_patches.append(image_patches)

FuyuImageProcessor 输出的 image_patches 的形状因此为 (1, num_images, num_patches, patch_width * patch_height * num_channels)

为了支持像 LLaVA 中那样使用 MultiModalFieldConfig.batched(),我们通过覆盖 BaseMultiModalProcessor._call_hf_processor() 来删除额外的批次维度

def _call_hf_processor(
    self,
    prompt: str,
    mm_data: Mapping[str, object],
    mm_kwargs: Mapping[str, object],
) -> BatchFeature:
    processed_outputs = super()._call_hf_processor(
        prompt=prompt,
        mm_data=mm_data,
        mm_kwargs=mm_kwargs,
    )

    image_patches = processed_outputs.get("image_patches")
    if image_patches is not None:
        images = mm_data["images"]
        assert isinstance(images, list)

        # Original output: (1, num_images, Pn, Px * Py * C)
        # New output: (num_images, Pn, Px * Py * C)
        assert (isinstance(image_patches, list)
                and len(image_patches) == 1)
        assert (isinstance(image_patches[0], torch.Tensor)
                and len(image_patches[0]) == len(images))

        processed_outputs["image_patches"] = image_patches[0]

    return processed_outputs

注意

我们的实际代码对仅文本输入进行了特殊处理,以防止 HF 处理器发出不必要的警告。

这使我们可以覆盖 _get_mm_fields_config() 如下

def _get_mm_fields_config(
    self,
    hf_inputs: BatchFeature,
    hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
    return dict(image_patches=MultiModalFieldConfig.batched("image"))

Prompt 更新#

覆盖 _get_prompt_updates() 以返回 PromptUpdate 实例的列表。

每个 PromptUpdate 实例指定由 HF 处理器执行的更新操作(例如:插入、替换)。

查看 HF 的 LlavaProcessor

# https://github.com/huggingface/transformers/blob/v4.47.1/src/transformers/models/llava/processing_llava.py#L167-L170
prompt_strings = []
for sample in text:
    sample = sample.replace(self.image_token, self.image_token * num_image_tokens)
    prompt_strings.append(sample)

它只是将每个输入 image_token 重复多次,次数等于占位符特征 tokens 的数量 (num_image_tokens)。 基于此,我们覆盖 _get_prompt_updates() 如下

def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    image_token_id = hf_config.image_token_index

    def get_replacement(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)

        image_size = images.get_image_size(item_idx)
        num_image_tokens = self.info.get_num_image_tokens(
            image_width=image_size.width,
            image_height=image_size.height,
        )

        return [image_token_id] * num_image_tokens

    return [
        PromptReplacement(
            modality="image",
            target=[image_token_id],
            replacement=get_replacement,
        ),
    ]

回顾步骤 2 中的特征 tokens 的布局

|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|
...
|SPEAKER||SPEAKER|...|SPEAKER||NEWLINE|

我们定义一个辅助函数来直接返回 ncolsnrows

def get_image_feature_grid_size(
    self,
    *,
    image_width: int,
    image_height: int,
) -> tuple[int, int]:
    image_processor = self.get_image_processor()
    target_width = image_processor.size["width"]
    target_height = image_processor.size["height"]
    patch_width = image_processor.patch_size["width"]
    patch_height = image_processor.patch_size["height"]

    if not (image_width <= target_width and image_height <= target_height):
        height_scale_factor = target_height / image_height
        width_scale_factor = target_width / image_width
        optimal_scale_factor = min(height_scale_factor, width_scale_factor)

        image_height = int(image_height * optimal_scale_factor)
        image_width = int(image_width * optimal_scale_factor)

    ncols = math.ceil(image_width / patch_width)
    nrows = math.ceil(image_height / patch_height)
    return ncols, nrows

基于此,我们可以最初将我们的替换 tokens 定义为

def get_replacement(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)

    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )

    # `_IMAGE_TOKEN_ID` corresponds to `|SPEAKER|`
    # `_NEWLINE_TOKEN_ID` corresponds to `|NEWLINE|`
    return ([_IMAGE_TOKEN_ID] * ncols + [_NEWLINE_TOKEN_ID]) * nrows

但是,这并不完全正确。 在调用 FuyuImageProcessor.preprocess_with_tokenizer_info 之后,BOS token (<s>) 也被添加到 promopt

# https://github.com/huggingface/transformers/blob/v4.48.3/src/transformers/models/fuyu/processing_fuyu.py#L417-L435
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
    image_input=tensor_batch_images,
    image_present=image_present,
    image_unpadded_h=image_unpadded_heights,
    image_unpadded_w=image_unpadded_widths,
    image_placeholder_id=image_placeholder_id,
    image_newline_id=image_newline_id,
    variable_sized=True,
)
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
    tokenizer=self.tokenizer,
    prompts=prompts,
    scale_factors=scale_factors,
    max_tokens_to_generate=self.max_tokens_to_generate,
    max_position_embeddings=self.max_position_embeddings,
    add_BOS=True,
    add_beginning_of_answer_token=True,
)

要仅将视觉嵌入分配给图像 tokens,而不是字符串,您可以返回 PromptUpdateDetails 的实例

hf_config = self.info.get_hf_config()
bos_token_id = hf_config.bos_token_id  # `<s>`
assert isinstance(bos_token_id, int)

def get_replacement_fuyu(item_idx: int):
    images = mm_items.get_items("image", ImageProcessorItems)
    image_size = images.get_image_size(item_idx)

    ncols, nrows = self.info.get_image_feature_grid_size(
        image_width=image_size.width,
        image_height=image_size.height,
    )
    image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                    [_NEWLINE_TOKEN_ID]) * nrows

    return PromptUpdateDetails.select_token_id(
        image_tokens + [bos_token_id],
        embed_token_id=_IMAGE_TOKEN_ID,
    )

最后,注意到 HF 处理器从 token 化的 prompt 中删除了 |ENDOFTEXT| token,我们可以搜索它以在字符串的开头进行替换

def _get_prompt_updates(
    self,
    mm_items: MultiModalDataItems,
    hf_processor_mm_kwargs: Mapping[str, object],
    out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
    hf_config = self.info.get_hf_config()
    bos_token_id = hf_config.bos_token_id
    assert isinstance(bos_token_id, int)

    tokenizer = self.info.get_tokenizer()
    eot_token_id = tokenizer.bos_token_id
    assert isinstance(eot_token_id, int)

    def get_replacement_fuyu(item_idx: int):
        images = mm_items.get_items("image", ImageProcessorItems)
        image_size = images.get_image_size(item_idx)

        ncols, nrows = self.info.get_image_feature_grid_size(
            image_width=image_size.width,
            image_height=image_size.height,
        )
        image_tokens = ([_IMAGE_TOKEN_ID] * ncols +
                        [_NEWLINE_TOKEN_ID]) * nrows

        return PromptUpdateDetails.select_token_id(
            image_tokens + [bos_token_id],
            embed_token_id=_IMAGE_TOKEN_ID,
        )

    return [
        PromptReplacement(
            modality="image",
            target=[eot_token_id],
            replacement=get_replacement_fuyu,
        )
    ]

注释#

插入特征 tokens 而不替换#

某些 HF 处理器直接插入特征 tokens,而无需替换原始 prompt 中的任何内容。 在这种情况下,您可以使用 PromptInsertion 而不是 PromptReplacement_get_prompt_updates() 内部。

示例

处理与多模态数据无关的 prompt 更新#

_get_prompt_updates() 假设 prompt 更新的每次应用都对应于一个多模态项。 如果 HF 处理器执行额外的处理,而与多模态项的数量无关,则您应覆盖 _apply_hf_processor_tokens_only(),以便处理后的 token 输入与在文本输入上应用 HF 处理器的结果一致。 这是因为根据我们的设计,token 输入绕过了 HF 处理器。

示例

自定义 HF 处理器#

某些模型未在 HF Hub 上定义 HF 处理器类。 在这种情况下,您可以定义一个自定义 HF 处理器,该处理器具有与 HF 处理器相同的调用签名,并将其传递给 _call_hf_processor()

示例