Source examples/offline_inference/rlhf_colocate.py.
Rlhf Colocate#
# SPDX-License-Identifier: Apache-2.0
"""
a simple demonstration to show how to co-locate
vLLM worker with training actors on the same GPUs,
for RLHF-like applications.
The key points:
- Control the placement of the vLLM workers with Ray, by setting
VLLM_RAY_PER_WORKER_GPUS and VLLM_RAY_BUNDLE_INDICES properly.
- Use cuda-ipc to pass tensors, since NCCL does not work when we have
multiple processes on the same GPU.
"""
import os
import ray
import torch
from ray.util.placement_group import placement_group
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
from vllm import LLM
from vllm.worker.worker import Worker
class MyWorker(Worker):
def report_device_id(self) -> str:
from vllm.platforms import current_platform
self.device_uuid = current_platform.get_device_uuid(self.device.index)
return self.device_uuid
def update_weights_from_ipc_handles(self, ipc_handles):
handles = ipc_handles[self.device_uuid]
device_id = self.device.index
weights = []
for name, handle in handles.items():
func, args = handle
list_args = list(args)
# the key is to change device id to the current device id
# in case two processes have different CUDA_VISIBLE_DEVICES
list_args[6] = device_id
tensor = func(*list_args)
weights.append((name, tensor))
self.model_runner.model.load_weights(weights=weights)
torch.cuda.synchronize()
def check_weights_changed(self):
"""
Check if the weights are updated to 0.
"""
weights_updated = True
for name, p in self.model_runner.model.named_parameters():
weights_updated = weights_updated and torch.allclose(
p, torch.zeros_like(p))
return weights_updated
class MyLLM(LLM):
def __init__(self, *args, bundle_indices: list, **kwargs):
# a hack to make the script work.
# stop ray from manipulating CUDA_VISIBLE_DEVICES
# at the top-level
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
# every worker will use 0.4 GPU, so that we can schedule
# 2 instances on the same GPUs.
os.environ["VLLM_RAY_PER_WORKER_GPUS"] = "0.4"
os.environ["VLLM_RAY_BUNDLE_INDICES"] = ",".join(
map(str, bundle_indices))
print(f"creating LLM with bundle_indices={bundle_indices}")
super().__init__(*args, **kwargs)
class RayTrainingActor:
def __init__(self):
# ray will set CUDA_VISIBLE_DEVICES to the assigned GPUs
from transformers import AutoModelForCausalLM
self.model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
self.model.to("cuda:0")
for name, p in self.model.named_parameters():
p.data.zero_()
torch.cuda.synchronize()
# the argument for get_device_uuid is the index
# of the GPU in the visible devices.
from vllm.platforms import current_platform
self.device_uuid = current_platform.get_device_uuid(0)
def report_device_id(self) -> str:
return self.device_uuid
def get_weight_ipc_handles(self):
from torch.multiprocessing.reductions import reduce_tensor
data = {}
for name, p in self.model.named_parameters():
# the training actor might only have a subset of the weights
# and need to all-gather the weights from all the actors.
# for demonstration, here we assume all training actors have
# the full weights.
data[name] = reduce_tensor(p.detach())
return {self.device_uuid: data}
# ray manages 4 GPUs
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3"
ray.init()
# we want to co-locate vLLM instance and the training actor
# on the same set of GPUs.
# the placement plan is as follows:
# GPU 0 and 1: training actor 0, 1, and vLLM instance 0 (with TP=2)
# GPU 2 and 3: training actor 2, 3, and vLLM instance 1 (with TP=2)
pg = placement_group([{"GPU": 1, "CPU": 0}] * 4)
ray.get(pg.ready())
print(f"placement group has bundles {pg.bundle_specs=}")
training_actors = []
training_actor_device_ids = []
inference_engines = []
inference_engine_device_ids = []
for bundle_index in [0, 1, 2, 3]:
training_actor = ray.remote(
num_cpus=0,
num_gpus=0.4,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg,
placement_group_capture_child_tasks=True,
placement_group_bundle_index=bundle_index,
),
)(RayTrainingActor).remote()
training_actors.append(training_actor)
for bundle_index, training_actor in enumerate(training_actors):
device_id = ray.get(training_actor.report_device_id.remote())
print(f"training actor {bundle_index} is on {device_id}")
training_actor_device_ids.append(device_id)
for (i, bundle_indices) in enumerate([[0, 1], [2, 3]]):
# IMPORTANT: when creating vLLM instances, we need to
# make sure there are no GPU activities on the target GPUs,
# otherwise, they will interfere with the vLLM memory profiling,
# and cause unexpected behaviors.
llm = ray.remote(
num_cpus=0,
num_gpus=0,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=pg,
placement_group_capture_child_tasks=True,
),
)(MyLLM).remote(
model="facebook/opt-125m",
enforce_eager=True,
worker_cls=MyWorker,
tensor_parallel_size=2,
distributed_executor_backend="ray",
gpu_memory_utilization=0.4,
bundle_indices=bundle_indices,
)
inference_engines.append(llm)
# don't call any method on the inference engine here,
# otherwise it will block until the vLLM instance is created.
for i, llm in enumerate(inference_engines):
inference_engine_device_ids.append(
ray.get(llm.collective_rpc.remote("report_device_id", args=tuple())))
print(f"inference engine {i} is on {inference_engine_device_ids[-1]}")
# check the placement
# the first two training actors should be
# on the same GPUs as the first inference engine
assert training_actor_device_ids[:2] == inference_engine_device_ids[0]
# the last two training actors should be
# on the same GPUs as the second inference engine
assert training_actor_device_ids[2:] == inference_engine_device_ids[1]
print("gather all the IPC handles from the training actors")
ipc_handles = {}
for actor in training_actors:
ipc_handles.update(ray.get(actor.get_weight_ipc_handles.remote()))
print("update the weights of the inference engines")
for llm in inference_engines:
ray.get(
llm.collective_rpc.remote("update_weights_from_ipc_handles",
args=(ipc_handles, )))
print("check if the weights are updated")
for llm in inference_engines:
assert ray.get(
llm.collective_rpc.remote("check_weights_changed", args=tuple()))