源代码 examples/offline_inference/data_parallel.py。
数据并行#
# SPDX-License-Identifier: Apache-2.0
# usage: VLLM_USE_V1=1 python examples/offline_inference/data_parallel.py
# we need to have a launcher to create multiple data parallel
# ranks. And each rank will create a vLLM instance to process its own prompts.
import os
from vllm import LLM, SamplingParams
from vllm.utils import get_open_port
def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
os.environ["VLLM_DP_RANK"] = str(dp_rank)
os.environ["VLLM_DP_SIZE"] = str(dp_size)
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
# set devices for each dp_rank
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(i) for i in range(dp_rank * GPUs_per_dp_rank, (dp_rank + 1) *
GPUs_per_dp_rank))
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# with DP, each rank should process different prompts.
# usually all the DP ranks process a full dataset,
# and each rank processes a different part of the dataset.
promts_per_rank = len(prompts) // dp_size
start = dp_rank * promts_per_rank
end = start + promts_per_rank
prompts = prompts[start:end]
if len(prompts) == 0:
# if any rank has no prompts to process,
# we need to set a placeholder prompt
prompts = ["Placeholder"]
print(f"DP rank {dp_rank} needs to process {len(prompts)} prompts")
# Create a sampling params object.
# since we are doing data parallel, every rank can have different
# sampling params. here we set different max_tokens for different
# ranks for demonstration.
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=16 * (dp_rank + 1))
# Create an LLM.
llm = LLM(model="facebook/opt-125m",
tensor_parallel_size=2,
enforce_eager=True)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"DP rank {dp_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
if __name__ == "__main__":
from multiprocessing import Process
dp_size = 2
GPUs_per_dp_rank = 2
dp_master_ip = "127.0.0.1"
dp_master_port = get_open_port()
procs = []
for i in range(dp_size):
proc = Process(target=main,
args=(dp_size, i, dp_master_ip, dp_master_port,
GPUs_per_dp_rank))
proc.start()
procs.append(proc)
for proc in procs:
proc.join()