数据并行

源代码 examples/offline_inference/data_parallel.py

数据并行#

# SPDX-License-Identifier: Apache-2.0
# usage: VLLM_USE_V1=1 python examples/offline_inference/data_parallel.py
# we need to have a launcher to create multiple data parallel
# ranks. And each rank will create a vLLM instance to process its own prompts.
import os

from vllm import LLM, SamplingParams
from vllm.utils import get_open_port


def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
    os.environ["VLLM_DP_RANK"] = str(dp_rank)
    os.environ["VLLM_DP_SIZE"] = str(dp_size)
    os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
    os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
    # set devices for each dp_rank
    os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
        str(i) for i in range(dp_rank * GPUs_per_dp_rank, (dp_rank + 1) *
                              GPUs_per_dp_rank))

    # Sample prompts.
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]

    # with DP, each rank should process different prompts.
    # usually all the DP ranks process a full dataset,
    # and each rank processes a different part of the dataset.
    promts_per_rank = len(prompts) // dp_size
    start = dp_rank * promts_per_rank
    end = start + promts_per_rank
    prompts = prompts[start:end]
    if len(prompts) == 0:
        # if any rank has no prompts to process,
        # we need to set a placeholder prompt
        prompts = ["Placeholder"]
    print(f"DP rank {dp_rank} needs to process {len(prompts)} prompts")

    # Create a sampling params object.
    # since we are doing data parallel, every rank can have different
    # sampling params. here we set different max_tokens for different
    # ranks for demonstration.
    sampling_params = SamplingParams(temperature=0.8,
                                     top_p=0.95,
                                     max_tokens=16 * (dp_rank + 1))

    # Create an LLM.
    llm = LLM(model="facebook/opt-125m",
              tensor_parallel_size=2,
              enforce_eager=True)
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"DP rank {dp_rank}, Prompt: {prompt!r}, "
              f"Generated text: {generated_text!r}")


if __name__ == "__main__":
    from multiprocessing import Process
    dp_size = 2
    GPUs_per_dp_rank = 2
    dp_master_ip = "127.0.0.1"
    dp_master_port = get_open_port()
    procs = []
    for i in range(dp_size):
        proc = Process(target=main,
                       args=(dp_size, i, dp_master_ip, dp_master_port,
                             GPUs_per_dp_rank))
        proc.start()
        procs.append(proc)
    for proc in procs:
        proc.join()