来源 examples/offline_inference/basic.
基础#
LLM
类提供了主要的 Python 接口,用于执行离线推理,即在不使用单独的模型推理服务器的情况下与模型交互。
使用方法#
本示例中的第一个脚本展示了 vLLM 最基本的使用方法。如果您是 Python 和 vLLM 的新手,应该从这里开始。
python examples/offline_inference/basic/basic.py
其余脚本包含一个 参数解析器,您可以使用它传递任何与 LLM
兼容的参数。尝试使用 --help
运行脚本以获取所有可用参数的列表。
python examples/offline_inference/basic/classify.py
python examples/offline_inference/basic/embed.py
python examples/offline_inference/basic/score.py
聊天和生成脚本也接受 采样参数:max_tokens
、temperature
、top_p
和 top_k
。
python examples/offline_inference/basic/chat.py
python examples/offline_inference/basic/generate.py
特性#
在支持传递参数的脚本中,您可以尝试以下特性。
默认生成配置#
--generation-config
参数指定在调用 LLM.get_default_sampling_params()
时,生成配置将从哪里加载。如果设置为 ‘auto’,则生成配置将从模型路径加载。如果设置为文件夹路径,则生成配置将从指定的文件夹路径加载。如果未提供,则将使用 vLLM 默认值。
如果在生成配置中指定了 max_new_tokens,则它将为所有请求设置服务器范围的输出 token 数量限制。
使用以下参数亲自尝试一下
--generation-config auto
量化#
AQLM#
vLLM 支持使用 AQLM 量化的模型。
通过将以下模型之一传递给 --model
参数来亲自尝试一个
ISTA-DASLab/Llama-2-7b-AQLM-2Bit-1x16-hf
ISTA-DASLab/Llama-2-7b-AQLM-2Bit-2x8-hf
ISTA-DASLab/Llama-2-13b-AQLM-2Bit-1x16-hf
ISTA-DASLab/Mixtral-8x7b-AQLM-2Bit-1x16-hf
BlackSamorez/TinyLlama-1_1B-Chat-v1_0-AQLM-2Bit-1x16-hf
其中一些模型可能对于单个 GPU 来说太大。您可以通过将
--tensor-parallel-size
设置为所需的 GPU 数量,将它们拆分到多个 GPU 上。
GGUF#
vLLM 支持使用 GGUF 量化的模型。
通过下载一个 GGUF 量化模型并使用以下参数来亲自尝试一个
from huggingface_hub import hf_hub_download
repo_id = "bartowski/Phi-3-medium-4k-instruct-GGUF"
filename = "Phi-3-medium-4k-instruct-IQ2_M.gguf"
print(hf_hub_download(repo_id, filename=filename))
--model {local-path-printed-above} --tokenizer microsoft/Phi-3-medium-4k-instruct
CPU 卸载#
--cpu-offload-gb
参数可以被视为一种虚拟的方式来增加 GPU 内存大小。例如,如果您有一个 24 GB 的 GPU 并将其设置为 10,实际上您可以将其视为一个 34 GB 的 GPU。然后,您可以加载一个具有 BF16 权重的 13B 模型,这至少需要 26GB 的 GPU 内存。请注意,这需要快速的 CPU-GPU 互连,因为模型的一部分是在每次模型前向传递中从 CPU 内存动态加载到 GPU 内存的。
使用以下参数亲自尝试一下
--model meta-llama/Llama-2-13b-chat-hf --cpu-offload-gb 10
示例材料#
basic.py
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="facebook/opt-125m")
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
chat.py
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def main(args: dict):
# Pop arguments not used by LLM
max_tokens = args.pop("max_tokens")
temperature = args.pop("temperature")
top_p = args.pop("top_p")
top_k = args.pop("top_k")
chat_template_path = args.pop("chat_template_path")
# Create an LLM
llm = LLM(**args)
# Create sampling params object
sampling_params = llm.get_default_sampling_params()
if max_tokens is not None:
sampling_params.max_tokens = max_tokens
if temperature is not None:
sampling_params.temperature = temperature
if top_p is not None:
sampling_params.top_p = top_p
if top_k is not None:
sampling_params.top_k = top_k
def print_outputs(outputs):
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Generated text: {generated_text!r}")
print("-" * 80)
print("=" * 80)
# In this script, we demonstrate how to pass input to the chat method:
conversation = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": "Hello"
},
{
"role": "assistant",
"content": "Hello! How can I assist you today?"
},
{
"role": "user",
"content":
"Write an essay about the importance of higher education.",
},
]
outputs = llm.chat(conversation, sampling_params, use_tqdm=False)
print_outputs(outputs)
# You can run batch inference with llm.chat API
conversations = [conversation for _ in range(10)]
# We turn on tqdm progress bar to verify it's indeed running batch inference
outputs = llm.chat(conversations, sampling_params, use_tqdm=True)
print_outputs(outputs)
# A chat template can be optionally supplied.
# If not, the model will use its default chat template.
if chat_template_path is not None:
with open(chat_template_path) as f:
chat_template = f.read()
outputs = llm.chat(
conversations,
sampling_params,
use_tqdm=False,
chat_template=chat_template,
)
if __name__ == "__main__":
parser = FlexibleArgumentParser()
# Add engine args
engine_group = parser.add_argument_group("Engine arguments")
EngineArgs.add_cli_args(engine_group)
engine_group.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
# Add sampling params
sampling_group = parser.add_argument_group("Sampling parameters")
sampling_group.add_argument("--max-tokens", type=int)
sampling_group.add_argument("--temperature", type=float)
sampling_group.add_argument("--top-p", type=float)
sampling_group.add_argument("--top-k", type=int)
# Add example params
parser.add_argument("--chat-template-path", type=str)
args: dict = vars(parser.parse_args())
main(args)
classify.py
# SPDX-License-Identifier: Apache-2.0
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass task="classify" for classification models
model = LLM(**vars(args))
# Generate logits. The output is a list of ClassificationRequestOutputs.
outputs = model.classify(prompts)
# Print the outputs.
for prompt, output in zip(prompts, outputs):
probs = output.outputs.probs
probs_trimmed = ((str(probs[:16])[:-1] +
", ...]") if len(probs) > 16 else probs)
print(f"Prompt: {prompt!r} | "
f"Class Probabilities: {probs_trimmed} (size={len(probs)})")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(model="jason9693/Qwen2.5-1.5B-apeach",
task="classify",
enforce_eager=True)
args = parser.parse_args()
main(args)
embed.py
# SPDX-License-Identifier: Apache-2.0
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def main(args: Namespace):
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create an LLM.
# You should pass task="embed" for embedding models
model = LLM(**vars(args))
# Generate embedding. The output is a list of EmbeddingRequestOutputs.
outputs = model.embed(prompts)
# Print the outputs.
for prompt, output in zip(prompts, outputs):
embeds = output.outputs.embedding
embeds_trimmed = ((str(embeds[:16])[:-1] +
", ...]") if len(embeds) > 16 else embeds)
print(f"Prompt: {prompt!r} | "
f"Embeddings: {embeds_trimmed} (size={len(embeds)})")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(model="intfloat/e5-mistral-7b-instruct",
task="embed",
enforce_eager=True)
args = parser.parse_args()
main(args)
generate.py
# SPDX-License-Identifier: Apache-2.0
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def main(args: dict):
# Pop arguments not used by LLM
max_tokens = args.pop("max_tokens")
temperature = args.pop("temperature")
top_p = args.pop("top_p")
top_k = args.pop("top_k")
# Create an LLM
llm = LLM(**args)
# Create a sampling params object
sampling_params = llm.get_default_sampling_params()
if max_tokens is not None:
sampling_params.max_tokens = max_tokens
if temperature is not None:
sampling_params.temperature = temperature
if top_p is not None:
sampling_params.top_p = top_p
if top_k is not None:
sampling_params.top_k = top_k
# Generate texts from the prompts. The output is a list of RequestOutput
# objects that contain the prompt, generated text, and other information.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
# Add engine args
engine_group = parser.add_argument_group("Engine arguments")
EngineArgs.add_cli_args(engine_group)
engine_group.set_defaults(model="meta-llama/Llama-3.2-1B-Instruct")
# Add sampling params
sampling_group = parser.add_argument_group("Sampling parameters")
sampling_group.add_argument("--max-tokens", type=int)
sampling_group.add_argument("--temperature", type=float)
sampling_group.add_argument("--top-p", type=float)
sampling_group.add_argument("--top-k", type=int)
args: dict = vars(parser.parse_args())
main(args)
score.py
# SPDX-License-Identifier: Apache-2.0
from argparse import Namespace
from vllm import LLM, EngineArgs
from vllm.utils import FlexibleArgumentParser
def main(args: Namespace):
# Sample prompts.
text_1 = "What is the capital of France?"
texts_2 = [
"The capital of Brazil is Brasilia.",
"The capital of France is Paris.",
]
# Create an LLM.
# You should pass task="score" for cross-encoder models
model = LLM(**vars(args))
# Generate scores. The output is a list of ScoringRequestOutputs.
outputs = model.score(text_1, texts_2)
# Print the outputs.
for text_2, output in zip(texts_2, outputs):
score = output.outputs.score
print(f"Pair: {[text_1, text_2]!r} | Score: {score}")
if __name__ == "__main__":
parser = FlexibleArgumentParser()
parser = EngineArgs.add_cli_args(parser)
# Set example specific arguments
parser.set_defaults(model="BAAI/bge-reranker-v2-m3",
task="score",
enforce_eager=True)
args = parser.parse_args()
main(args)