源代码 examples/online_serving/openai_chat_completion_with_reasoning.py。
OpenAI 聊天完成与推理#
# SPDX-License-Identifier: Apache-2.0
"""
An example shows how to generate chat completions from reasoning models
like DeepSeekR1.
To run this example, you need to start the vLLM server with the reasoning
parser:
```bash
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
--enable-reasoning --reasoning-parser deepseek_r1
```
This example demonstrates how to generate chat completions from reasoning models
using the OpenAI Python client library.
"""
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://127.0.0.1:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
# Round 1
messages = [{"role": "user", "content": "9.11 and 9.8, which is greater?"}]
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content for Round 1:", reasoning_content)
print("content for Round 1:", content)
# Round 2
messages.append({"role": "assistant", "content": content})
messages.append({
"role": "user",
"content": "How many Rs are there in the word 'strawberry'?",
})
response = client.chat.completions.create(model=model, messages=messages)
reasoning_content = response.choices[0].message.reasoning_content
content = response.choices[0].message.content
print("reasoning_content for Round 2:", reasoning_content)
print("content for Round 2:", content)