生产指标#
vLLM 公开了一些指标,可用于监控系统的健康状况。 这些指标通过 vLLM OpenAI 兼容 API 服务器上的 /metrics
端点公开。
您可以使用 Python 或 Docker 启动服务器
vllm serve unsloth/Llama-3.2-1B-Instruct
然后查询端点以从服务器获取最新的指标
$ curl http://0.0.0.0:8000/metrics
# HELP vllm:iteration_tokens_total Histogram of number of tokens per engine_step.
# TYPE vllm:iteration_tokens_total histogram
vllm:iteration_tokens_total_sum{model_name="unsloth/Llama-3.2-1B-Instruct"} 0.0
vllm:iteration_tokens_total_bucket{le="1.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="8.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="16.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="32.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="64.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="128.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="256.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
vllm:iteration_tokens_total_bucket{le="512.0",model_name="unsloth/Llama-3.2-1B-Instruct"} 3.0
...
以下指标已公开
class Metrics:
"""
vLLM uses a multiprocessing-based frontend for the OpenAI server.
This means that we need to run prometheus_client in multiprocessing mode
See https://prometheus.github.io/client_python/multiprocess/ for more
details on limitations.
"""
labelname_finish_reason = "finished_reason"
labelname_waiting_lora_adapters = "waiting_lora_adapters"
labelname_running_lora_adapters = "running_lora_adapters"
labelname_max_lora = "max_lora"
_gauge_cls = prometheus_client.Gauge
_counter_cls = prometheus_client.Counter
_histogram_cls = prometheus_client.Histogram
def __init__(self, labelnames: List[str], vllm_config: VllmConfig):
# Unregister any existing vLLM collectors (for CI/CD)
self._unregister_vllm_metrics()
max_model_len = vllm_config.model_config.max_model_len
# System stats
# Scheduler State
self.gauge_scheduler_running = self._gauge_cls(
name="vllm:num_requests_running",
documentation="Number of requests currently running on GPU.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_scheduler_waiting = self._gauge_cls(
name="vllm:num_requests_waiting",
documentation="Number of requests waiting to be processed.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_lora_info = self._gauge_cls(
name="vllm:lora_requests_info",
documentation="Running stats on lora requests.",
labelnames=[
self.labelname_running_lora_adapters,
self.labelname_max_lora,
self.labelname_waiting_lora_adapters,
],
multiprocess_mode="livemostrecent",
)
self.gauge_scheduler_swapped = self._gauge_cls(
name="vllm:num_requests_swapped",
documentation="Number of requests swapped to CPU.",
labelnames=labelnames,
multiprocess_mode="sum")
# KV Cache Usage in %
self.gauge_gpu_cache_usage = self._gauge_cls(
name="vllm:gpu_cache_usage_perc",
documentation="GPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_cpu_cache_usage = self._gauge_cls(
name="vllm:cpu_cache_usage_perc",
documentation="CPU KV-cache usage. 1 means 100 percent usage.",
labelnames=labelnames,
multiprocess_mode="sum")
# Prefix caching block hit rate
self.gauge_cpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:cpu_prefix_cache_hit_rate",
documentation="CPU prefix cache block hit rate.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_gpu_prefix_cache_hit_rate = self._gauge_cls(
name="vllm:gpu_prefix_cache_hit_rate",
documentation="GPU prefix cache block hit rate.",
labelnames=labelnames,
multiprocess_mode="sum")
# Iteration stats
self.counter_num_preemption = self._counter_cls(
name="vllm:num_preemptions_total",
documentation="Cumulative number of preemption from the engine.",
labelnames=labelnames)
self.counter_prompt_tokens = self._counter_cls(
name="vllm:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labelnames)
self.counter_generation_tokens = self._counter_cls(
name="vllm:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labelnames)
self.counter_tokens = self._counter_cls(
name="vllm:tokens_total",
documentation="Number of prefill plus generation tokens processed.",
labelnames=labelnames)
buckets = [1, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8096]
if not vllm_config.model_config.enforce_eager:
buckets = vllm_config.compilation_config.\
cudagraph_capture_sizes.copy()
buckets.sort()
self.histogram_iteration_tokens = self._histogram_cls(
name="vllm:iteration_tokens_total",
documentation="Histogram of number of tokens per engine_step.",
labelnames=labelnames,
buckets=buckets)
self.histogram_time_to_first_token = self._histogram_cls(
name="vllm:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labelnames,
buckets=[
0.001, 0.005, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.25, 0.5,
0.75, 1.0, 2.5, 5.0, 7.5, 10.0
])
self.histogram_time_per_output_token = self._histogram_cls(
name="vllm:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labelnames,
buckets=[
0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.75,
1.0, 2.5
])
# Request stats
# Latency
request_latency_buckets = [
0.3, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 30.0,
40.0, 50.0, 60.0
]
self.histogram_e2e_time_request = self._histogram_cls(
name="vllm:e2e_request_latency_seconds",
documentation="Histogram of end to end request latency in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_queue_time_request = self._histogram_cls(
name="vllm:request_queue_time_seconds",
documentation=
"Histogram of time spent in WAITING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_inference_time_request = self._histogram_cls(
name="vllm:request_inference_time_seconds",
documentation=
"Histogram of time spent in RUNNING phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_prefill_time_request = self._histogram_cls(
name="vllm:request_prefill_time_seconds",
documentation=
"Histogram of time spent in PREFILL phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_decode_time_request = self._histogram_cls(
name="vllm:request_decode_time_seconds",
documentation=
"Histogram of time spent in DECODE phase for request.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_time_in_queue_request = self._histogram_cls(
name="vllm:time_in_queue_requests",
documentation=
"Histogram of time the request spent in the queue in seconds.",
labelnames=labelnames,
buckets=request_latency_buckets)
self.histogram_model_forward_time_request = self._histogram_cls(
name="vllm:model_forward_time_milliseconds",
documentation=
"Histogram of time spent in the model forward pass in ms.",
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
self.histogram_model_execute_time_request = self._histogram_cls(
name="vllm:model_execute_time_milliseconds",
documentation=
"Histogram of time spent in the model execute function in ms.",
labelnames=labelnames,
buckets=build_1_2_3_5_8_buckets(3000))
# Metadata
self.histogram_num_prompt_tokens_request = self._histogram_cls(
name="vllm:request_prompt_tokens",
documentation="Number of prefill tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_num_generation_tokens_request = \
self._histogram_cls(
name="vllm:request_generation_tokens",
documentation="Number of generation tokens processed.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.histogram_max_num_generation_tokens_request = self._histogram_cls(
name="vllm:request_max_num_generation_tokens",
documentation=
"Histogram of maximum number of requested generation tokens.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len))
self.histogram_n_request = self._histogram_cls(
name="vllm:request_params_n",
documentation="Histogram of the n request parameter.",
labelnames=labelnames,
buckets=[1, 2, 5, 10, 20],
)
self.histogram_max_tokens_request = self._histogram_cls(
name="vllm:request_params_max_tokens",
documentation="Histogram of the max_tokens request parameter.",
labelnames=labelnames,
buckets=build_1_2_5_buckets(max_model_len),
)
self.counter_request_success = self._counter_cls(
name="vllm:request_success_total",
documentation="Count of successfully processed requests.",
labelnames=labelnames + [Metrics.labelname_finish_reason])
# Speculative decoding stats
self.gauge_spec_decode_draft_acceptance_rate = self._gauge_cls(
name="vllm:spec_decode_draft_acceptance_rate",
documentation="Speulative token acceptance rate.",
labelnames=labelnames,
multiprocess_mode="sum")
self.gauge_spec_decode_efficiency = self._gauge_cls(
name="vllm:spec_decode_efficiency",
documentation="Speculative decoding system efficiency.",
labelnames=labelnames,
multiprocess_mode="sum")
self.counter_spec_decode_num_accepted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_accepted_tokens_total",
documentation="Number of accepted tokens.",
labelnames=labelnames))
self.counter_spec_decode_num_draft_tokens = self._counter_cls(
name="vllm:spec_decode_num_draft_tokens_total",
documentation="Number of draft tokens.",
labelnames=labelnames)
self.counter_spec_decode_num_emitted_tokens = (self._counter_cls(
name="vllm:spec_decode_num_emitted_tokens_total",
documentation="Number of emitted tokens.",
labelnames=labelnames))
以下指标已弃用,并将在未来版本中移除
(目前没有指标被弃用)
注意:当指标在 X.Y
版本中被弃用时,它们会在 X.Y+1
版本中被隐藏,但可以使用 --show-hidden-metrics-for-version=X.Y
应急方案重新启用,然后在 X.Y+2
版本中被移除。