源代码 examples/online_serving/openai_chat_completion_tool_calls_with_reasoning.py。
OpenAI 聊天完成工具调用与推理#
# SPDX-License-Identifier: Apache-2.0
"""
An example demonstrates how to use tool calling with reasoning models
like QwQ-32B. The reasoning_content will not be parsed by the tool
calling process; only the final output will be parsed.
To run this example, you need to start the vLLM server with both
the reasoning parser and tool calling enabled.
```bash
vllm serve Qwen/QwQ-32B \
--enable-reasoning --reasoning-parser deepseek_r1 \
--enable-auto-tool-choice --tool-call-parser hermes
```
"""
from openai import OpenAI
# Now, simulate a tool call
def get_current_weather(city: str, state: str, unit: 'str'):
return ("The weather in Dallas, Texas is 85 degrees fahrenheit. It is "
"partly cloudly, with highs in the 90's.")
available_tools = {"get_current_weather": get_current_weather}
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "https://127.0.0.1:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
tools = [{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"city": {
"type":
"string",
"description":
"The city to find the weather for, e.g. 'San Francisco'"
},
"state": {
"type":
"string",
"description":
"the two-letter abbreviation for the state that the city is"
" in, e.g. 'CA' which would mean 'California'"
},
"unit": {
"type": "string",
"description": "The unit to fetch the temperature in",
"enum": ["celsius", "fahrenheit"]
}
},
"required": ["city", "state", "unit"]
}
}
}]
messages = [{
"role": "user",
"content": "Hi! How are you doing today?"
}, {
"role": "assistant",
"content": "I'm doing well! How can I help you?"
}, {
"role":
"user",
"content":
"Can you tell me what the temperate will be in Dallas, in fahrenheit?"
}]
def extract_reasoning_and_calls(chunks: list):
reasoning_content = ""
tool_call_idx = -1
arguments = []
function_names = []
for chunk in chunks:
if chunk.choices[0].delta.tool_calls:
tool_call = chunk.choices[0].delta.tool_calls[0]
if tool_call.index != tool_call_idx:
tool_call_idx = chunk.choices[0].delta.tool_calls[0].index
arguments.append("")
function_names.append("")
if tool_call.function:
if tool_call.function.name:
function_names[tool_call_idx] = tool_call.function.name
if tool_call.function.arguments:
arguments[tool_call_idx] += tool_call.function.arguments
else:
if hasattr(chunk.choices[0].delta, "reasoning_content"):
reasoning_content += chunk.choices[0].delta.reasoning_content
return reasoning_content, arguments, function_names
print("---------Full Generate With Automatic Function Calling-------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools)
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: "
f"{tool_calls.choices[0].message.tool_calls[0].function.name}")
print(f"function arguments: "
f"{tool_calls.choices[0].message.tool_calls[0].function.arguments}")
print("----------Stream Generate With Automatic Function Calling-----------")
tool_calls_stream = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("----------Full Generate With Named Function Calling-----------------")
tool_calls = client.chat.completions.create(messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name":
"get_current_weather"
}
})
tool_call = tool_calls.choices[0].message.tool_calls[0].function
print(f"reasoning_content: {tool_calls.choices[0].message.reasoning_content}")
print(f"function name: {tool_call.name}")
print(f"function arguments: {tool_call.arguments}")
print("----------Stream Generate With Named Function Calling--------------")
tool_calls_stream = client.chat.completions.create(
messages=messages,
model=model,
tools=tools,
tool_choice={
"type": "function",
"function": {
"name": "get_current_weather"
}
},
stream=True)
chunks = []
for chunk in tool_calls_stream:
chunks.append(chunk)
reasoning_content, arguments, function_names = extract_reasoning_and_calls(
chunks)
print(f"reasoning_content: {reasoning_content}")
print(f"function name: {function_names[0]}")
print(f"function arguments: {arguments[0]}")
print("\n\n")